The role of hippocampal adult neurogenesis in methamphetamine addiction.

Brain Plast

Department of Anesthesiology, University of California San Diego, VA San Diego Healthcare System, San Diego, CA, USA.

Published: August 2018

One of the consequences of chronic methamphetamine (Meth) abuse and Meth addiction is impaired hippocampal function which plays a critical role in enhanced propensity for relapse. This impairment is predicted by alterations in hippocampal neurogenesis, structural- and functional-plasticity of granule cell neurons (GCNs), and expression of plasticity-related proteins in the dentate gyrus. This review will elaborate on the effects of Meth in animal models during different stages of addiction-like behavior on proliferation, differentiation, maturation, and survival of newly born neural progenitor cells. We will then discuss evidence for the contribution of adult neurogenesis in context-driven Meth-seeking behavior in animal models. These findings from interdisciplinary studies suggest that a subset of newly born GCNs contribute to context-driven Meth-seeking in Meth addicted animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091036PMC
http://dx.doi.org/10.3233/BPL-170058DOI Listing

Publication Analysis

Top Keywords

adult neurogenesis
8
animal models
8
newly born
8
context-driven meth-seeking
8
role hippocampal
4
hippocampal adult
4
neurogenesis methamphetamine
4
methamphetamine addiction
4
addiction consequences
4
consequences chronic
4

Similar Publications

Background: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, posttraumatic stress disorder, dementia, and age-related cognitive decline. Although BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis, its significance as a pharmacological target has not been tested.

Methods: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis.

View Article and Find Full Text PDF

Introduction: Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus.

View Article and Find Full Text PDF

Objective: Parkinson's and Huntington's diseases are characterized by progressive neuronal loss. Previous studies using human postmortem tissues have shown the impact of neurodegenerative disorders on adult neurogenesis. The extent to which adult neural stem cells are activated in the subventricular zone and whether therapeutic treatments such as deep brain stimulation promote adult neurogenesis remains unclear.

View Article and Find Full Text PDF

Anatomy, histology and ultrastructure of the adult human olfactory peduncle: Blood vessel and corpora amylacea assessment.

Tissue Cell

January 2025

Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain. Electronic address:

The mammalian olfactory system is responsible for processing environmental chemical stimuli and comprises several structures, including the olfactory epithelium, olfactory bulb, olfactory peduncle (OP), and olfactory cortices. Despite the critical role played by the OP in the conduction of olfactory information, it has remained understudied. In this work, optical, confocal, and electron microscopy were employed to examine the anatomy, histology, and ultrastructure of six human OP specimens (ages 37-84 years).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!