Does leaf anatomy aid in species identification of (Arecaceae)?

AoB Plants

Laboratório de Anatomia e Dendrologia, Universidade Federal de Minas Gerais (UFMG), Avenida Universitária, 1000, Bairro Universitário, Montes Claros, MG, Brazil.

Published: August 2018

AI Article Synopsis

  • The study investigates the leaf anatomy of 18 species in a neotropical genus to find reliable characters for species identification, as traditional external morphology can be variable.
  • An anatomical key is proposed using Xper software, allowing identification through observable anatomical features, including exclusive characters for certain species.
  • While all species share common leaf traits, the anatomical features like raphides provide valuable distinctions that can aid in recognizing and validating species without necessarily reflecting their phylogenetic relationships.

Article Abstract

is a neotropical genus whose identification is based mostly on characters from external morphology, which are sometimes variable or inadequate for species differentiation. We aimed to verify if leaf anatomy of 18 species brings new characters suitable for species identification and if it corroborates the phylogenetic relationship within the genus. Moreover, we propose an anatomical key to assist in species identification. Pinnae were collected and subjected to the usual techniques for light and scanning electron microscopies. The anatomical key was created with the aid of Xper software, based on the importance of characters to distinguish species according to the Jaccard index. All species have isobilateral mirrored mesophyll, amphistomatic leaves and secondary vascular bundles with sclerenchymatic sheath reinforcement connected to the hypodermis. Among the species studied, and showed exclusive characters. For the other species, up to five characters are sufficient for delimitation. Our anatomical key presents relevant characters that allow the identification of the recognized species of . Reliable anatomical characters of easy observation, especially the raphides, are valuable in species distinction. Leaf anatomy, already used to support new taxa in related genera like and , can also be useful to validate questionable species and differentiate between similar species but do not reflect the proposed relationship between species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101567PMC
http://dx.doi.org/10.1093/aobpla/ply046DOI Listing

Publication Analysis

Top Keywords

species
14
leaf anatomy
12
species identification
12
anatomical key
12
based characters
8
characters
7
identification
5
anatomy aid
4
aid species
4
identification arecaceae?
4

Similar Publications

Investigation and elimination of noncovalent artificial aggregates during non-reduced capillary electrophoresis-sodium dodecyl sulfate analysis of a multi-specific antibody.

J Pharm Biomed Anal

January 2025

State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China. Electronic address:

Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) is widely used in the biopharmaceutical industry for monitoring purity and analyzing impurities. The accuracy of the method may be compromised by artificial species resulting from sample preparation or electrophoresis separation due to suboptimal conditions. During non-reduced CE-SDS analysis of a multispecific antibody (msAb), named as multispecific antibody C (msAb-C), a cluster of unexpected peaks was observed after the main peak.

View Article and Find Full Text PDF

The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.

View Article and Find Full Text PDF

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

The mosquito evolves two types of prophenoloxidases with diversified functions.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.

Insect phenoloxidase, presented as an inactive precursor prophenoloxidase (PPO) in hemolymph, catalyzes melanin formation, which is involved in wound healing, pathogen killing, reversible oxygen collection during insect respiration, and cuticle and eggshell formation. Mosquitoes possess 9 to 16 PPO members across different genera, a number that is more than that found in other dipteran insects. However, the reasons for the redundancy of these PPOs and whether they have distinct biochemical properties and physiological functions remain unclear.

View Article and Find Full Text PDF

Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!