Beta-tricalcium phosphate bioceramics are widely used as bone replacement scaffolds in bone tissue engineering. The purpose of this study is to develop beta-tricalcium phosphate scaffold with the optimum mechanical properties and porosity and to identify the effect of N-acetyl-L-cysteine loaded to beta-tricalcium phosphate scaffold on the enhancement of biocompatibility. The various interconnected porous scaffolds were fabricated using slurries containing various concentrations of beta-tricalcium phosphate and different coating times by replica method using polyurethane foam as a passing material. It was confirmed that the scaffold of 40 w/v% beta-tricalcium phosphate with three coating times had optimum microstructure and mechanical properties for bone tissue engineering application. The various concentration of N-acetyl-L-cysteine was loaded on 40 w/v% beta-tricalcium phosphate scaffold. Scaffold group loaded 5 mM N-acetyl-L-cysteine showed the best viability of MC3T3-E1 preosteoblastic cells in the water-soluble tetrazolium salt assay test.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091360 | PMC |
http://dx.doi.org/10.1155/2018/9457910 | DOI Listing |
Sci Rep
December 2024
Department of Basic Sciences, Araçatuba Dental School, São Paulo State University - UNESP, Araçatuba, 16066-840, Brazil.
Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil.
Background: The use of ex vivo assays associated with biomaterials may allow the short-term visualization of a specific cell type response inserted in a local microenvironment. Blood is the first component to come into contact with biomaterials, providing blood clot formation, being substantial in new tissue formation. Thus, this research investigated the physiological blood clot (PhC) patterns formed in 3D scaffolds (SCAs), based on chitosan and 20% beta-tricalcium phosphate and its effect on osteogenesis.
View Article and Find Full Text PDFClin Adv Periodontics
December 2024
Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: Recombinant human fibroblast growth factor-2 (rhFGF-2) has been shown to effectively promote the formation of new periodontal tissues, and its efficacy has been demonstrated in clinical settings. Moreover, the clinical and radiographic outcomes in the treatment of periodontal infrabony defects can be improved by using rhFGF-2 in combination with a bone substitute. Here, we present a case of four-wall bone defect in a tooth treated by combination regenerative therapy using rhFGF-2 and beta-tricalcium phosphate (β-TCP).
View Article and Find Full Text PDFObjective: Aim: The aim of this study is to determine the dynamics of histoarchitectural changes in the bone-ceramic regenerate after transplantation β-tricalcium phosphate into an experimental defect in the rabbit mandible.
Patients And Methods: Materials and Methods: Adult male rabbits aged 6-7 months and weighing 2.5-3 kg were used for the study.
RSC Adv
December 2024
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México UNAM Av. Universidad, C.U. Coyoacán 04510 Ciudad de México Mexico.
The challenge of bone tissue regeneration implies the use of new advanced technologies for the manufacture of polymeric matrices, with 3D printing technology being a suitable option for tissue engineering due to its low processing cost, its simple operation and the wide use of biomaterials in biomedicine. Among the biopolymers used to obtain porous scaffolds, poly(lactic acid) (PLA) stands out due its mechanical and biodegradability properties, although its low bioactivity to promote bone regeneration is a great challenge. In this research, a 3D scaffold based on PLA reinforced with bioceramics such as graphene oxide (GO) and β-tricalcium phosphate (TCP) was designed and characterized by FTIR, XRD, DSC, SEM and mechanical tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!