Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer.

Front Pharmacol

Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, United Kingdom.

Published: August 2018

Exosomes and microvesicles (EMV) are lipid bilayer-enclosed structures, released by cells and involved in intercellular communication through transfer of proteins and genetic material. EMV release is also associated with various pathologies, including cancer, where increased EMV release is amongst other associated with chemo-resistance and active transfer of pro-oncogenic factors. Recent studies show that EMV-inhibiting agents can sensitize cancer cells to chemotherapeutic agents and reduce cancer growth . Cannabidiol (CBD), a phytocannabinoid derived from , has anti-inflammatory and anti-oxidant properties, and displays anti-proliferative activity. Here we report a novel role for CBD as a potent inhibitor of EMV release from three cancer cell lines: prostate cancer (PC3), hepatocellular carcinoma (HEPG2) and breast adenocarcinoma (MDA-MB-231). CBD significantly reduced exosome release in all three cancer cell lines, and also significantly, albeit more variably, inhibited microvesicle release. The EMV modulating effects of CBD were found to be dose dependent (1 and 5 μM) and cancer cell type specific. Moreover, we provide evidence that this may be associated with changes in mitochondrial function, including modulation of STAT3 and prohibitin expression, and that CBD can be used to sensitize cancer cells to chemotherapy. We suggest that the known anti-cancer effects of CBD may partly be due to the regulatory effects on EMV biogenesis, and thus CBD poses as a novel and safe modulator of EMV-mediated pathological events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099119PMC
http://dx.doi.org/10.3389/fphar.2018.00889DOI Listing

Publication Analysis

Top Keywords

emv release
16
cancer cell
12
cancer
9
cannabidiol cbd
8
release associated
8
sensitize cancer
8
cancer cells
8
release three
8
three cancer
8
cell lines
8

Similar Publications

A "plug-and-display" nanoparticle based on attenuated outer membrane vesicles enhances the immunogenicity of protein antigens.

J Control Release

December 2024

The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou 213164, China.

Article Synopsis
  • Bacterial outer membrane vesicles (OMV) show promise as protein vaccine carriers due to their self-adjuvant properties and biocompatibility, but their use is limited by immunotoxicity.
  • Researchers developed an enhanced version, EMV, by gene-editing to remove harmful proteins, resulting in reduced inflammatory responses in mouse models.
  • EMV efficiently displays protein antigens and enhances dendritic cell uptake, leading to strong immune responses, making them a suitable candidate for vaccine delivery against various infectious diseases.
View Article and Find Full Text PDF

Introduction: The aims of this study were to determine (1) whether endothelial nitric oxide synthase (eNOS) inhibition stimulates endothelial microvesicles (EMVs) release and (2) the effect of EMVs derived from eNOS-inhibited cells on endothelial cell eNOS, inflammation, apoptosis, and tissue-type plasminogen activator (t-PA).

Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor (NG-nitro-l-arginine methyl ester [L-NAME], 300 µM) for 24 h. EMVs from untreated and L-NAME-treated cells were isolated, quantified, and exposed to HUVECs for 24 h.

View Article and Find Full Text PDF

Extracellular vesicles released from microglia after palmitate exposure impact brain function.

J Neuroinflammation

July 2024

Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, Lund, 221 84, Sweden.

Dietary patterns that include an excess of foods rich in saturated fat are associated with brain dysfunction. Although microgliosis has been proposed to play a key role in the development of brain dysfunction in diet-induced obesity (DIO), neuroinflammation with cytokine over-expression is not always observed. Thus, mechanisms by which microglia contribute to brain impairment in DIO are uncertain.

View Article and Find Full Text PDF

Background: The release of microvesicles (MVs) is an essential phenomenon for inter-cellular signaling in health and disease. The role of MVs in cancer is multidimensional and includes cancer cell survival, proliferation, and invasion. In this prospective study, we analyzed MV levels in colorectal cancer patients and assessed the importance of MV release in early-stage colorectal cancer and survival.

View Article and Find Full Text PDF

Wound Fluid Extracellular Microvesicles: A Potential Innovative Biomarker for Wound Healing.

Plast Reconstr Surg Glob Open

May 2024

Department of Surgery, College of Medicine and Life Science, University of Toledo, Toledo, Ohio.

Background: Extracellular vesicles, or microvesicles, are a large family of membrane-bound fluid-filled sacs that cells release into the extracellular environment. Extracellular microvesicles (EMVs) are essential for cell-to-cell communications that promote wound healing. We hypothesize a correlation between the concentration of EMVs in wound fluid and the percentage of wound healing in treated chronic, nonhealing, wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!