The human genome contains thousands of long non-coding RNAs, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen. A specific long non-coding RNA-non-coding RNA activated by DNA damage (NORAD)-has recently been shown to be required for maintaining genomic stability, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex-which we term NORAD-activated ribonucleoprotein complex 1 (NARC1)-that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19-CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression-which represent phenotypes that are mechanistically linked to TOP1 and PRPF19-CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0453-zDOI Listing

Publication Analysis

Top Keywords

norad
12
long non-coding
12
topoisomerase complex
8
non-coding rnas
8
dna damage
8
maintaining genomic
8
genomic stability
8
norad interacts
8
rbmx-binding site
8
ribonucleoprotein complex
8

Similar Publications

Background: Childhood cancer is not a high priority in health care financing for many countries, including in Ghana. Delayed care seeking and treatment abandonment, often due to the financial burden of care seeking to families, are common reasons for a relatively low overall survival (OS) in low-and middle-income countries. In this study, we analyzed the cost-effectiveness of extending health insurance coverage to children with Burkitt lymphoma (BL) in Ghana.

View Article and Find Full Text PDF

Disruption of the Pum2 axis Aggravates neuronal damage following cerebral Ischemia-Reperfusion in mice.

Brain Res

January 2025

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China. Electronic address:

Stroke remains a leading cause of disability and mortality worldwide, with mitochondrial dysfunction closely linked to ischemic injury. This study explores the Norad-Pum2-Mff axis as a key regulator of mitochondrial function following ischemia-reperfusion (I/R) injury. Using an oxygen-glucose deprivation/reoxygenation (OGD/R) model, Mff protein levels were significantly elevated post-OGD/R, while mRNA levels remained unchanged, suggesting post-transcriptional regulation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons (DA) which can be caused by environmental and genetic factors. lncRNAs have emerged as an important regulatory layer in neurodegenerative disorders, including PD. In this study, we investigated and validated lncRNAs that may serve as diagnostic or therapeutic targets for PD.

View Article and Find Full Text PDF

Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are pivotal regulators of cellular processes. Here we reveal an interaction between the lncRNA NORAD, noted for its role in DNA stability, and the immune related transcription factor STAT3 in embryonic and differentiated human cells. Results from NORAD knockdown experiments implicate NORAD in facilitating STAT3 nuclear localization and suppressing antiviral gene activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!