Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heterostructures based on two-dimensional (2D) materials have sparked wide interests in both fundamental physics and applied devices. Recently, Dirac/Weyl semimetals are emerging as capable functional materials for optoelectronic devices. However, thus far the interfacial coupling of an all-semimetal 2D heterostructure has not been investigated, and its effects on optoelectronic properties remain less well understood. Here, a heterostructure comprising of all semi-metallic constituents, namely graphene and WTe, is fabricated. Standard photocurrent measurements on a graphene/WTe phototransistor reveal a pronounced photocurrent enhancement (a photoresponsivity ~8.7 A/W under 650 nm laser illumination). Transport and photocurrent mapping suggest that both photovoltaic and photothermoelectric effects contribute to the enhanced photoresponse of the hybrid system. Our results help to enrich the understanding of new and emerging device concepts based on 2D layered materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110789 | PMC |
http://dx.doi.org/10.1038/s41598-018-29717-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!