Super-regional land-use change and effects on the grassland specialist flora.

Nat Commun

Biogeography and Geomatics, Department of Physical Geography, Stockholm University, 10691, Stockholm, Sweden.

Published: August 2018

AI Article Synopsis

  • Habitat loss due to land-use change is the biggest threat to global biodiversity, particularly impacting European semi-natural grasslands which have seen significant declines since the early 1900s.
  • A study in southern Sweden over 50-70 years reveals a substantial loss of open cover and a homogenization of landscape, with variations based on historical landscape composition.
  • Analysis of nearly 47,000 grassland species shows that habitat loss has led to a decline in grassland specialist plants, with local conditions affecting species richness but historical landscape factors being even more influential, suggesting ongoing biodiversity declines may still occur.

Article Abstract

Habitat loss through land-use change is the most pressing threat to biodiversity worldwide. European semi-natural grasslands have suffered an ongoing decline since the early twentieth century, but we have limited knowledge of how grassland loss has affected biodiversity across large spatial scales. We quantify land-use change over 50-70 years across a 175,000 km super-region in southern Sweden, identifying a widespread loss of open cover and a homogenisation of landscape structure, although these patterns vary considerably depending on the historical composition of the landscape. Analysing species inventories from 46,796 semi-natural grasslands, our results indicate that habitat loss and degradation have resulted in a decline in grassland specialist plant species. Local factors are the best predictors of specialist richness, but the historical landscape predicts present-day richness better than the contemporary landscape. This supports the widespread existence of time-lagged biodiversity responses, indicating that further species losses could occur in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110833PMC
http://dx.doi.org/10.1038/s41467-018-05991-yDOI Listing

Publication Analysis

Top Keywords

land-use change
12
grassland specialist
8
habitat loss
8
semi-natural grasslands
8
super-regional land-use
4
change effects
4
effects grassland
4
specialist flora
4
flora habitat
4
loss
4

Similar Publications

We investigated the amount and distribution of waste generated by commercial tobacco, electronic cigarette, and cannabis (TEC) use to inform policy options aimed at mitigating the environmental harm caused by these products. Using disproportionate stratified random sampling, we selected 60 census blocks from the eight largest cities in San Diego County, California. We twice surveyed publicly accessible areas in these blocks to quantify TEC waste accumulation and its re-accumulation.

View Article and Find Full Text PDF

The impact of elevated CO on methanogen abundance and methane emissions in terrestrial ecosystems: A meta-analysis.

iScience

December 2024

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

Methane (CH), one of the major greenhouse gases, plays a pivotal role in global climate change. Elevated CO concentration (eCO) increases soil carbon storage, which may provide a valuable material base for soil methanogenic microorganisms and stimulating their growth, thereby ultimately affecting CH emissions. Therefore, to comprehend the effect of eCO on CH emissions, we conducted a meta-analysis encompassing 398 datasets from 59 publications (total of 50 sample sites).

View Article and Find Full Text PDF

Many agricultural watersheds rely on the voluntary use of management practices (MPs) to reduce nonpoint source nutrient and sediment loads; however, the water-quality effects of MPs are uncertain. We interpreted water-quality responses from as early as 1985 through 2020 in three agricultural Chesapeake Bay watersheds that were prioritized for MP implementation, namely, the Smith Creek (Virginia), Upper Chester River (Maryland), and Conewago Creek (Pennsylvania) watersheds. We synthesized patterns in MPs, climate, land use, and nutrient inputs to better understand factors affecting nutrient and sediment loads.

View Article and Find Full Text PDF

The semi-automatic and automatic extraction of land features such as buildings, trees, and roads using aerial laser scan data is crucial in land use change studies and urban management. This research introduces the "BTR" extractor, a novel software package designed to enhance classification accuracy of phenomena identified in the super points obtained from aerial laser scanners. Our method focuses on:-Comparing classification methods using airborne laser scanning data.

View Article and Find Full Text PDF

Assessing the threat status of species in response to global change is critical for biodiversity monitoring and conservation efforts. However, current frameworks, even the IUCN Red List, often neglect critical factors such as genetic diversity and the impacts of climate and land-use changes, hindering effective conservation planning. To address these limitations, we developed an enhanced extinction risk assessment framework using lizards as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!