Alloying provides a means by which to tune a metal catalyst's electronic structure and thus tailor its performance; however, mean-field behaviour in metals imposes limits. To access unprecedented catalytic behaviour, materials must exhibit emergent properties that are not simply interpolations of the constituent components' properties. Here we show an emergent electronic structure in single-atom alloys, whereby weak wavefunction mixing between minority and majority elements results in a free-atom-like electronic structure on the minority element. This unusual electronic structure alters the minority element's adsorption properties such that the bonding with adsorbates resembles the bonding in molecular metal complexes. We demonstrate this phenomenon with AgCu alloys, dilute in Cu, where the Cu d states are nearly unperturbed from their free-atom state. In situ electron spectroscopy demonstrates that this unusual electronic structure persists in reaction conditions and exhibits a 0.1 eV smaller activation barrier than bulk Cu in methanol reforming. Theory predicts that several other dilute alloys exhibit this phenomenon, which offers a design approach that may lead to alloys with unprecedented catalytic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41557-018-0125-5 | DOI Listing |
Nat Commun
January 2025
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Designing asymmetrical structures is an effective strategy to optimize metallic catalysts for electrochemical carbon dioxide reduction reactions. Herein, we demonstrate a transient pulsed discharge method for instantaneously constructing graphene-aerogel supports asymmetric copper nanocluster catalysts. This process induces the convergence of copper atoms decomposed by copper chloride onto graphene originating from the intense current pulse and high temperature.
View Article and Find Full Text PDFNat Commun
January 2025
National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.
In flat-band systems, emergent physics can be substantially modified by the presence of another nearby electronic band. For example, a Mott˘Hubbard insulator can turn into a charge transfer insulator if other electronic states enter between the upper and lower Hubbard bands. Here, we introduce twisted double bilayer (TDB) WSe, with twist angles near 60°, as a controllable platform in which the K-valley band can be tuned to close vicinity of the Γ-valley moiré flat band.
View Article and Find Full Text PDFNat Commun
January 2025
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China.
Crystalline pentacene is a model solid-state light-harvesting material because its quantum efficiencies exceed 100% via ultrafast singlet fission. The singlet fission mechanism in pentacene crystals is disputed due to insufficient electronic information in time-resolved experiments and intractable quantum mechanical calculations for simulating realistic crystal dynamics. Here we combine a multiscale multiconfigurational approach and machine learning photodynamics to understand competing singlet fission mechanisms in crystalline pentacene.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Advanced Photonic and Electronic Materials, Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.
The incorporation of thermal dynamics alongside conventional optoelectronic principles holds immense promise for advancing technology. Here, we introduce a GaON/GaN heterostructure-nanowire ultraviolet electrochemical cell of observing a photothermoelectric bipolar impulse characteristic. By leveraging the distinct thermoelectric properties of GaON/GaN, rapid generation of hot carriers establishes bidirectional instantaneous gradients in concentration and temperature within the nanoscale heterostructure via light on/off modulation.
View Article and Find Full Text PDFNat Commun
January 2025
DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India.
We report the synthesis of [Ag(o-CBT)] abbreviated as Ag, a stable 8e⁻ anionic cluster with a unique Ag@Ag@Ag core-shell structure, where o-CBT is ortho-carborane-1-thiol. By substituting Ag atoms with Au and/or Cu at specific sites we created isostructural clusters [AuAg(o-CBT)] (AuAg), [AgCu(o-CBT)] (AgCu) and [AuAgCu(o-CBT)] (AuAgCu). These substitutions make systematic modulation of their structural and electronic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!