AI Article Synopsis

  • Trillions of microorganisms in the human gut significantly influence health, and their composition can be shaped by diet, lifestyle, and genetics, often reflecting ethnic backgrounds.
  • A study involving 2,084 participants from the HELIUS study found that individuals sharing the same city and ethnicity have similar gut microbiota characteristics.
  • The research identified three main gut microbiota profiles linked to ethnicity, highlighting differences in diversity and composition between groups like Moroccans, Turks, Ghanaians, African Surinamese, South-Asian Surinamese, and Dutch, suggesting that understanding ethnic differences is crucial for microbiome research.

Article Abstract

Trillions of microorganisms inhabit the human gut and are regarded as potential key factors for health. Characteristics such as diet, lifestyle, or genetics can shape the composition of the gut microbiota and are usually shared by individuals from comparable ethnic origin. So far, most studies assessing how ethnicity relates to the intestinal microbiota compared small groups living at separate geographical locations. Using fecal 16S ribosomal RNA gene sequencing in 2,084 participants of the Healthy Life in an Urban Setting (HELIUS) study, we show that individuals living in the same city tend to share similar gut microbiota characteristics with others of their ethnic background. Ethnicity contributed to explain the interindividual dissimilarities in gut microbiota composition, with three main poles primarily characterized by operational taxonomic units (OTUs) classified as Prevotella (Moroccans, Turks, Ghanaians), Bacteroides (African Surinamese, South-Asian Surinamese), and Clostridiales (Dutch). The Dutch exhibited the greatest gut microbiota α-diversity and the South-Asian Surinamese the smallest, with corresponding enrichment or depletion in numerous OTUs. Ethnic differences in α-diversity and interindividual dissimilarities were independent of metabolic health and only partly explained by ethnic-related characteristics including sociodemographic, lifestyle, or diet factors. Hence, the ethnic origin of individuals may be an important factor to consider in microbiome research and its potential future applications in ethnic-diverse societies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-018-0160-1DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
composition gut
8
ethnic origin
8
interindividual dissimilarities
8
south-asian surinamese
8
gut
6
microbiota
6
ethnic
5
depicting composition
4
microbiota population
4

Similar Publications

Isatidis root polysaccharides ameliorates post-weaning diarrhea by promoting intestinal health and modulating the gut microbiota in piglets.

Vet Q

December 2025

Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.

This study aimed to investigate the effects of dietary isatidis root polysaccharide (IRP) on diarrhea, immunity, and intestinal health in weanling piglets. Forty healthy piglets were randomly assigned to five groups receiving varying dosages of IRP. The findings indicated that different concentrations of IRP significantly reduced diarrhea scores ( < 0.

View Article and Find Full Text PDF

Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats.

Food Funct

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

Alpha-Glucosidase Inhibitors in Aging and Aging-Related Diseases: Clinical Applications and Relevant Mechanisms.

Aging Dis

January 2025

Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Aging is a complex and universal process marked by gradual functional declines at the cellular and tissue levels, often leading to a range of aging-related diseases such as diabetes, cardiovascular diseases, and cancer. Delaying the aging process can help prevent, slow down, and alleviate the severity of these various conditions, enhancing overall health and well-being. Alpha-glucosidase inhibitors (AGIs) are a class of widely used antidiabetic drugs that inhibit alpha-glucosidase in the small intestinal mucosa, delaying carbohydrate absorption and reducing postprandial hyperglycemia.

View Article and Find Full Text PDF

Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!