People are interested in traveling in an infinite virtual environment, but no standard navigation method exists yet in Virtual Reality (VR). The Walking-In-Place (WIP) technique is a navigation method that simulates movement to enable immersive travel with less simulator sickness in VR. However, attaching the sensor to the body is troublesome. A previously introduced method that performed WIP using an Inertial Measurement Unit (IMU) helped address this problem. That method does not require placement of additional sensors on the body. That study proved, through evaluation, the acceptable performance of WIP. However, this method has limitations, including a high step-recognition rate when the user does various body motions within the tracking area. Previous works also did not evaluate WIP step recognition accuracy. In this paper, we propose a novel WIP method using position and orientation tracking, which are provided in the most PC-based VR HMDs. Our method also does not require additional sensors on the body and is more stable than the IMU-based method for non-WIP motions. We evaluated our method with nine subjects and found that the WIP step accuracy was 99.32% regardless of head tilt, and the error rate was 0% for squat motion, which is a motion prone to error. We distinguish jog-in-place as "intentional motion" and others as "unintentional motion". This shows that our method correctly recognizes only jog-in-place. We also apply the saw-tooth function to our method in a mathematical way. Natural navigation is possible when the virtual velocity approach is applied to the WIP method. Our method is useful for various applications which requires jogging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165345 | PMC |
http://dx.doi.org/10.3390/s18092832 | DOI Listing |
JMIR Form Res
January 2025
Larner College of Medicine, University of Vermont, Burlington, VT, United States.
Background: Social media has become a widely used way for people to share opinions about health care and medical topics. Social media data can be leveraged to understand patient concerns and provide insight into why patients may turn to the internet instead of the health care system for health advice.
Objective: This study aimed to develop a method to investigate Reddit posts discussing health-related conditions.
JMIR Form Res
January 2025
Northwestern Medicine, Chicago, IL, United States.
Background: Patient recruitment and data management are laborious, resource-intensive aspects of clinical research that often dictate whether the successful completion of studies is possible. Technological advances present opportunities for streamlining these processes, thus improving completion rates for clinical research studies.
Objective: This paper aims to demonstrate how technological adjuncts can enhance clinical research processes via automation and digital integration.
JMIR Serious Games
January 2025
School of Computing, Engineering and Mathematical Sciences, Optus Chair Digital Health, La Trobe University, Melbourne, Australia.
Background: This review explores virtual reality (VR) and exercise simulator-based interventions for individuals with attention-deficit/hyperactivity disorder (ADHD). Past research indicates that both VR and simulator-based interventions enhance cognitive functions, such as executive function and memory, though their impacts on attention vary.
Objective: This study aimed to contribute to the ongoing scientific discourse on integrating technology-driven interventions into the management and evaluation of ADHD.
JMIR AI
January 2025
Department of Information Systems and Business Analytics, Iowa State University, Ames, IA, United States.
Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada.
Background: While expert optometrists tend to rely on a deep understanding of the disease and intuitive pattern recognition, those with less experience may depend more on extensive data, comparisons, and external guidance. Understanding these variations is important for developing artificial intelligence (AI) systems that can effectively support optometrists with varying degrees of experience and minimize decision inconsistencies.
Objective: The main objective of this study is to identify and analyze the variations in diagnostic decision-making approaches between novice and expert optometrists.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!