Unraveling the inner workings of respiratory arsenate reductase.

Proc Natl Acad Sci U S A

Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202

Published: September 2018

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140534PMC
http://dx.doi.org/10.1073/pnas.1812841115DOI Listing

Publication Analysis

Top Keywords

unraveling inner
4
inner workings
4
workings respiratory
4
respiratory arsenate
4
arsenate reductase
4
unraveling
1
workings
1
respiratory
1
arsenate
1
reductase
1

Similar Publications

Record-setting cyanobacterial bloom in the largest freshwater lake in northern China caused by joint effects of hydrological variations and nutrient enrichment.

Environ Res

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Cyanobacterial blooms represent a significant environmental issue posing widespread threats to global aquatic ecological health. Climate and nutrient enrichment were the most studied factors modulating cyanobacterial blooms in eutrophic lakes. However, in many floodplain lakes, the importance of hydrological variation in driving and predicting cyanobacterial blooms is often overlooked and largely underestimated, which has hampered the effectiveness of lake management.

View Article and Find Full Text PDF

Unravelling the complex influence of dissolved organic matter on microbial diversity in a salinized lake.

Environ Res

January 2025

Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.

Ecosystems in cold and arid regions, such as Dai Lake - a typical inland, salinized lake in the semi-arid region of northern China - face severe environmental challenges, including salinization and biodiversity loss. This study investigates the chemical composition of dissolved organic matter (DOM) and the structure of microbial communities in lake water and sediments, offering novel insights into the ecosystem's dynamics. In winter, DOM in the lake water is primarily derived from decaying plant and animal matter, while sediment DOM is predominantly associated with microbial activity.

View Article and Find Full Text PDF

From Tea to Functional Foods: Exploring Bunge for Anti-Rheumatoid Arthritis and Unraveling Its Potential Mechanisms.

Nutrients

December 2024

Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China.

Background: Bunge (CM) shows promising potential for managing rheumatoid arthritis (RA) and digestive disorders, attributed to its rich content of bioactive compounds such as polyphenols and flavonoids. Despite its common use in herbal tea, the specific mechanisms underlying CM's anti-inflammatory and joint-protective effects remain unclear, limiting its development as a functional food. This study investigated the effects of aqueous CM extract on RA in collagen-induced arthritis (CIA) rats and explored the underlying mechanisms.

View Article and Find Full Text PDF

Deciphering Drought Resilience in Solanaceae Crops: Unraveling Molecular and Genetic Mechanisms.

Biology (Basel)

December 2024

Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China.

The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation.

View Article and Find Full Text PDF

Plant roots perceive heat stress (HS) and adapt their architecture accordingly, which in turn influence the yield in crops. Investigating their heterogeneity and cell type-specific response to HS is essential for improving crop resilience. Here, we generate single-cell transcriptional landscape of maize (Zea mays) roots in response to HS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!