Photoperiodic floral induction is controlled by the leaf-derived and antagonistic mobile signals florigen and antiflorigen. In response to photoperiodic variations, florigen and antiflorigen are produced in leaves and translocated through phloem to the apex, where they counteract floral initiation. Florigen and antiflorigen are encoded by a pair of homologs belonging to ()- or ()-like clades in the phosphatidylethanolamine-binding domain protein (PEBP) family. The PEBP gene family contains -, -, and ()-like clades. Evolutionary analysis suggests that - and -like clades arose from an ancient -like clade. The protein movement of the PEBP family is an evolutionarily conserved mechanism in many plants; however, the mRNA movement of the PEBP family remains controversial. Here, we examined the mRNA movement of PEBP genes in different plant species. We identified a tobacco () gene, denoted , and showed that is an ortholog of the Arabidopsis () antiflorigen In tobacco, acts as a mobile molecule that non-cell-autonomously inhibits flowering. Grafting experiments showed that endogenous and ectopically expressed mRNAs move long distances in tobacco and Arabidopsis. Heterografts of tobacco and tomato () showed that, in addition to , multiple members of the -, -, and -like clades of tobacco and tomato PEBP gene families are mobile mRNAs. Our results suggest that the mRNA mobility is a common feature of the three clades of PEBP-like genes among different plant species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181055PMC
http://dx.doi.org/10.1104/pp.18.00725DOI Listing

Publication Analysis

Top Keywords

-like clades
16
florigen antiflorigen
12
pebp family
12
movement pebp
12
pebp gene
8
mrna movement
8
genes plant
8
plant species
8
tobacco tomato
8
pebp
7

Similar Publications

Blackgram is an important short-duration grain legume, but its yield is highly affected by various stresses. Among biotic stresses, yellow mosaic disease (YMD) is known as a devastating disease that leads to 100% yield loss under severe conditions. The cultivated lines possess resistance, but exploring more diverse sources of resistance may be useful for pyramiding to improve the durability of said resistance.

View Article and Find Full Text PDF

After the global impact of the COVID-19 pandemic, concerns over virus transmission have risen. A state of health emergency was declared in 2022 due to Clade 2 of the monkeypox (MPOX) virus. In August 2024, another emergency was declared by the World Health Organization (WHO) because of the widespread Clade 1b, which caused a more severe and lethal disease.

View Article and Find Full Text PDF

Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.

View Article and Find Full Text PDF

Introduction: Despite a scarcity of data, before 2022 Ukraine was already considered a high-prevalence country for carbapenemase-producing Enterobacterales (CPE), and the situation has dramatically worsened during the full-scale war with Russia. The aim of this study was to analyse CPEs isolated in Poland from victims of war in Ukraine.

Methods: The study included 65 CPE isolates from March 2022 till February 2023, recovered in 36 Polish medical centres from 57 patients arriving from Ukraine, differing largely by age and reason for hospitalisation.

View Article and Find Full Text PDF

Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi.

Fungal Genet Biol

January 2025

Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:

Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!