Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement.

J Biosci Bioeng

Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, 804 Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. Electronic address:

Published: February 2019

Many cyanophages, which infect cyanobacteria, most of possess putative sigma factors that have high amino acid sequence homology with the σ70-type sigma factor present in cyanobacteria, allowing them to obtain energy and metabolites for their own propagation. In this study, we aimed to modify the carbon metabolism of Synechococcus elongatus PCC 7942 by expressing putative sigma factors from Synechococcus phages to improve bioproduction. Four cyanophage-derived putative sigma factors-putative RpsD4 from Synechococcus phage S-CBS1, putative RpoD and putative RpoS from S-CBS2, and putative RpsD4 from S-CBS3-were selected for this purpose. These were introduced into S. elongatus PCC 7942, and their expression was controlled with a theophylline-dependent riboswitch. The expression of the putative RpoD from S-CBS2 and putative RpsD4 from S-CBS3 resulted in a significant decrease in the growth rate of S. elongatus PCC 7942. In addition, metabolome analysis showed a 3.2-fold increase in acetyl-CoA concentration with the expression of the putative RpoD from S-CBS2 and a 1.9-fold increase with the putative RpsD4 from S-CBS3. The results of RT-qPCR showed that several sugar metabolism genes were repressed by the putative RpoD and activated by the putative RpsD4. In particular, the engineered strain overexpressing the putative RpsD4 and expressing phosphate acetyltransferase succeeded in improving the productivity of the model target product acetate to 217% of its previous value. To the best of our knowledge, this study is the first to modify the metabolism of S. elongatus PCC 7942 by expressing their putative sigma factors from cyanophages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2018.07.019DOI Listing

Publication Analysis

Top Keywords

pcc 7942
20
putative rpsd4
20
sigma factors
16
putative sigma
16
putative rpod
16
putative
14
s elongatus pcc
12
carbon metabolism
8
metabolism synechococcus
8
synechococcus elongatus
8

Similar Publications

Salinity and light markedly influence cyanobacterial viability. High salinity disrupts the osmotic balance, while excess light energy affects redox potential in the cells. Regulating the ratio of saturated and unsaturated alka(e)ne and fatty acids in cyanobacteria is thought to have crucial roles in coping with these stresses by regulating membrane fluidity.

View Article and Find Full Text PDF

A circadian clock is reconstituted in vitro by incubating three proteins, KaiA, KaiB, and KaiC from the non-nitrogen-fixing cyanobacterium Synechococcus elongatus PCC 7942 in the presence of ATP. Leptolyngbya boryana is a filamentous cyanobacterium that grows diazotrophically under microoxic conditions. Among the aforementioned proteins, KaiC is the main clock oscillator belonging to the RecA ATPase superfamily.

View Article and Find Full Text PDF

Metabolic analysis reveals the contribution of mechanosensitive channel MscM to extracellular release of glutamate in glycogen-deficient Synechococcus elongatus.

J Biosci Bioeng

December 2024

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. Electronic address:

In bacteria, mechanosensitive channels mediate extracellular release of osmolytes, including glutamate, functioning as safety valves upon osmotic downshift. In cyanobacteria, the role of mechanosensitive channels has not been completely elucidated. Recently, the glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 was found to release glutamate extracellularly, giving rise to a hypothesis that the role of mechanosensitive channels in cyanobacteria is conserved.

View Article and Find Full Text PDF

Cellular processes are dynamic and often oscillatory, requiring precise coordination for optimal cell function. How distinct oscillatory processes can couple within a single cell remains an open question. Here, we use the cyanobacterial circadian clock as a model system to explore the coupling of oscillatory and pulsatile gene circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!