Astrocytes have shown longstanding promise as therapeutic targets for various central nervous system diseases. To facilitate drug development targeting astrocytes, we have recently developed a new conditionally immortalized human astrocyte cell line, termed HASTR/ci35 cells. In this study, in order to further increase their chances to contribute to various astrocyte studies, we report on the development of a culture method that improves HASTR/ci35 cell differentiation status and provide several proofs related to their astrocyte characteristics. The culture method is based on the simultaneous elimination of serum effects and immortalization signals. The results of qPCR showed that the culture method significantly enhanced several astrocyte marker gene expression levels. Using the differentiated HASTR/ci35, we examined their response profiles to nucleotide treatment and inflammatory stimuli, along with their membrane fatty acid composition. Consequently, we found that they responded to ADP or UTP treatment with a transient increase of intracellular Ca concentration, and that they could show reactive response to interleukin-1β treatments. Furthermore, the membrane phospholipids of the cells were enriched with polyunsaturated fatty acids. To summarize, as a unique human astrocyte model carrying the capability of a differentiation induction properties, HASTR/ci35 cells are expected to contribute substantially to astrocyte-oriented drug development studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphs.2018.06.013 | DOI Listing |
Purinergic Signal
January 2025
International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Radiology and Oncology, Instituto de Radiologia. Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 75, Cerqueira César, São Paulo, 05403010, Brazil.
Background: The presence of diffuse brain damage in normal-appearing white matter (NAWM) and gray matter (NAGM) in neuromyelitis optica spectrum disorder (NMOSD) remains controversial. We aimed to address this controversy by applying a multiparametric MRI approach. Additionally, the association between MRI metrics and clinical variables was explored.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
Epilepsy is a leading cause of disability and mortality worldwide. However, despite the availability of more than 20 antiseizure medications, more than one-third of patients continue to experience seizures. Given the urgent need to explore new treatment strategies for epilepsy, recent research has highlighted the potential of targeting gliosis, metabolic disturbances, and neural circuit abnormalities as therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!