Biomaterial for tissue engineering is a topic of huge progress with a recent surge in fabrication and characterization advances. Biomaterials for tissue engineering applications or as scaffolds depend on various parameters such as fabrication technology, porosity, pore size, mechanical strength, and surface available for cell attachment. To serve the function of the scaffold, the porous biomaterial should have enough mechanical strength to aid in tissue engineering. With a new manufacturing technology, we have obtained high strength materials by optimizing a few processing parameters such as pressure, temperature, and dwell time, yielding the monolith with porosity in the range of 80%⁻93%. The three-dimensional interconnectivity of the porous media through scales for the newly manufactured biomaterial has been investigated using newly developed 3D correlative and multi-modal imaging techniques. Multiscale X-ray tomography, FIB-SEM Slice & View stacking, and high-resolution STEM-EDS electronic tomography observations have been combined allowing quantification of morphological and geometrical spatial distributions of the multiscale porous network through length scales spanning from tens of microns to less than a nanometer. The spatial distribution of the wall thickness has also been investigated and its possible relationship with pore connectivity and size distribution has been studied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164489 | PMC |
http://dx.doi.org/10.3390/jfb9030051 | DOI Listing |
J Biophotonics
March 2025
School of Mechanical Engineering, Kookmin University, Seoul, Republic of Korea.
This study evaluated the optomechanical and structural properties of individual macroscopic layers in swine skin tissues treated with a nontoxic optical clearing agent. The clearing agent was prepared by dissolving 2,2'-thiodiethanol in a phosphate-buffered solution and applied for up to 6 days. Prolonged clearing increased both the total and unscattered transmittance.
View Article and Find Full Text PDFBone Joint Res
March 2025
Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
Aims: Osteoarthritis (OA) is a widespread chronic degenerative joint disease with an increasing global impact. The pathogenesis of OA involves complex interactions between genetic and environmental factors. Despite this, the specific genetic mechanisms underlying OA remain only partially understood, hindering the development of targeted therapeutic strategies.
View Article and Find Full Text PDFNeuroscientist
March 2025
Cortical Labs, Melbourne, Australia.
Harnessing intelligence from brain cells in vitro requires a multidisciplinary approach integrating wetware, hardware, and software. Wetware comprises the in vitro brain cells themselves, where differentiation from induced pluripotent stem cells offers ethical scalability; hardware typically involves a life support system and a setup to record the activity from and deliver stimulation to the brain cells; and software is required to control the hardware and process the signals coming from and going to the brain cells. This review provides a broad summary of the foundational technologies underpinning these components, along with outlining the importance of technology integration.
View Article and Find Full Text PDFAdv Mater
March 2025
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of energy and power engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
Flexible bioelectronic interfaces with adhesive properties are essential for advancing modern medicine and human-machine interactions. However, achieving both stable adhesion and non-damaging detachment remains a significant challenge. In this study, a lithium bond-mediated molecular cascade hydrogel (LMCH) for bioelectronic interfaces is designed, which facilitates robust adhesion at the tissue level and permits atraumatic detachment for repositioning as required.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
March 2025
Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (D.M.M., Z.Z.).
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!