Objective: We sought to develop a new posterior fusion technique composed of bilateral C1 titanium cables and C2 pedicle screw-rods for treatment of atlantoaxial instability not suitable for C1 screw placement.
Methods: A study was conducted of 18 patients with atlantoaxial instability who had C1 broken screw trajectory or anatomic anomalies. All patients underwent posterior fixation with bilateral C1 titanium cables and C2 pedicle screws. The follow-up period was a minimum 1 year. Clinical outcomes measurements included visual analog scale score for neck pain assessment, the American Spinal Injury Association Impairment Scale and Japanese Orthopaedic Association score for neurologic status and function. According to preoperative computed tomography (CT) reconstruction and CT angiography, the patients selected in this study were not suitable for C1 screw placement. Postoperative plain radiographs and CT reconstruction were performed to evaluate the reduction, bony fusion, and implant position. All outcomes were evaluated at each follow-up.
Results: The average clinical follow-up period was 24 months (range 12-36 months). All patients had complete neck pain relief at postoperative 6 months. Their neurologic symptoms had improved significantly at 1-year follow-up. Radiologic outcomes indicated good bony fusion and construction stability in all patients without implant failure at the last follow-up. No neural or vascular complications related to this technique were observed.
Conclusions: Posterior atlantoaxial fixation using C1 titanium cables and C2 pedicle screw-rod construct appears to be an effective and safe technique for treatment of atlantoaxial instability, which could be an alternative method for cases unsuitable for C1 screw placement when using C1-C2 screw fixation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2018.08.103 | DOI Listing |
BMC Musculoskelet Disord
December 2024
Department of Trauma Orthopaedics and Hand Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Background: Sternoclavicular joint dislocation (SJD) is rare, and joint instability after dislocation easily leads to deformity, pain, and limitations in performing activities, often requiring surgical treatment. Currently, there is no ideal internal fixation method for SJD.
Case Presentation: We report the case of a 38-year-old female patient with anterior dislocation of the right sternoclavicular joint (SJ) caused by a car accident who underwent open reduction and internal fixation using the double plate technique combined with the cable technique.
J Orthop Surg Res
November 2024
Department of Spine Surgery, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China.
ACS Appl Mater Interfaces
November 2024
Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States.
The design and characterization of thin-film ribbon cables as electrical interconnects for implanted neural stimulation and recording devices are reported. Our goal is to develop flexible and extensible ribbon cables that integrate with thin-film, cortical penetrating microelectrode arrays (MEAs). Amorphous silicon carbide (a-SiC) and polyimide were employed as the structural elements of the ribbon cables and multilayer titanium/gold thin films as electrical traces.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, PR China. Electronic address:
Nat Nanotechnol
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!