Preference of A/T ending codons in mitochondrial ATP6 gene under phylum Platyhelminthes: Codon usage of ATP6 gene in Platyhelminthes.

Mol Biochem Parasitol

Department of Biotechnology, Assam University, Silchar, 788011, Assam, India. Electronic address:

Published: October 2018

Unequal usage of synonymous codons in the gene transcript for an amino acid is known as codon usage bias (CUB). It is a unique property of gene as well as genome. Mutation and natural selection are known to be the major factors that influence CUB. Other factors encompass gene expression level, GC content, codon position, recombination rate, RNA stability and gene length. CUB analysis helps in in-depth understanding of the molecular biology, genetics and genome evolution in a species. We used bioinformatic methods to explore the pattern of CUB in MT-ATP6 gene in different classes of platyhelminthes. The analysis is based on genetic code of translational table 14 of National Center of Biotechnology Information (NCBI) where the codon AAA codes for asparagine and TAA for tyrosine amino acid. The synonymous codon usage order (SCUO), an index of CUB, values in different classes namely cestoda, monogenea, rabditophora, trematoda and turbellaria of platyhelminths were found to be 0.43, 0.32, 0.49, 0.40 and 0.36, respectively which suggest that the codon usage bias of ATP6 gene was low (SCUO < 0.50). Highly significant correlation (p < 0.001) was found between SCUO and various GC contents indicating that GC composition had an influence on CUB. From the relative synonymous codon usage (RSCU) analysis on codons, we found most of the over-represented codons in all the classes were A/T ending types, which suggested that the preferred codons were influenced by compositional constraints. The PR2 plot revealed asymmetric usage of AT and GC bases among the four fold degenerate codon families with greater usage of G and T over A and C. Highly significant correlation (p < 0.001) was found between overall nucleotide composition and its 3rd codon position suggesting that both natural selection and mutation pressure might have influenced the CUB among different classes. Neutrality analysis revealed that natural selection might play a major role. Mutational responsive index (MRI) and translational selection (P2) values elucidated that selection for translational efficiency moderately affected the codon usage bias in MT-ATP6 gene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2018.08.007DOI Listing

Publication Analysis

Top Keywords

codon usage
16
atp6 gene
12
gene
8
amino acid
8
usage bias
8
codon
6
usage
5
cub
5
preference a/t
4
a/t codons
4

Similar Publications

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids.

World J Microbiol Biotechnol

January 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.

Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.

View Article and Find Full Text PDF

is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).

View Article and Find Full Text PDF

: Section is the most diverse group in the genus L., and this group of plants has a long history of cultivation in China as popular ornamental flowers and oil plants. Sect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!