The deubiquitinase inhibitor b-AP15 induces strong proteotoxic stress and mitochondrial damage.

Biochem Pharmacol

Department of Oncology-Pathology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-751 85 Linköping, Sweden. Electronic address:

Published: October 2018

Human cancers are characterized by intrinsic or acquired resistance to apoptosis and evasion of apoptosis has been proposed to contribute to treatment resistance. Bis-benzylidine piperidone compounds, containing α,β-unsaturated carbonyl functionalities, have been extensively documented as being effective in killing apoptosis-resistant cells and to display promising antineoplastic activities in a number of tumor models. We here explored the phenotypic response of colon cancer cells to b-AP15, a bis-benzylidine piperidone previously shown to inhibit the proteasome deubiquitinases (DUBs) USP14 and UCHL5. Whereas similar overall mRNA and protein expression profiles were induced by b-AP15 and the clinically available proteasome inhibitor bortezomib, b-AP15 induced stronger increases of chaperone expression. b-AP15 also induced a stronger accumulation of polyubiquitinated proteins in exposed cells. These proteins were found to partially colocalize with organelle structures, including mitochondria. Mitochondrial oxidative phosphorylation decreased in cells exposed to b-AP15, a phenomenon enhanced under conditions of severe proteotoxic stress caused by inhibition of the VCP/p97 ATPase and inhibition of protein translocation over the ER. We propose that mitochondrial damage caused by the association of misfolded proteins with mitochondrial membranes may contribute to the atypical cell death mode induced by b-AP15 and related compounds. The robust mode of cell death induction by this class of drugs holds promise for treatment of tumor cells characterized by apoptosis resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2018.08.039DOI Listing

Publication Analysis

Top Keywords

proteotoxic stress
8
mitochondrial damage
8
bis-benzylidine piperidone
8
induced b-ap15
8
b-ap15 induced
8
induced stronger
8
cell death
8
b-ap15
7
cells
5
deubiquitinase inhibitor
4

Similar Publications

HSF1 at the crossroads of chemoresistance: from current insights to future horizons in cell death mechanisms.

Front Cell Dev Biol

January 2025

Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.

Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.

View Article and Find Full Text PDF

The within-host environment changes over circadian time and influences the replication and severity of viruses. Genetic knockout of the circadian transcription factors CRYPTOCHROME 1 and CRYPTOCHROME 2 (/; CKO) leads to altered protein homeostasis and chronic activation of the integrated stress response (ISR). The adaptive ISR signalling pathways help restore cellular homeostasis by downregulating protein synthesis in response to endoplasmic reticulum overloading or viral infections.

View Article and Find Full Text PDF

Degradation of aberrant, excess, and regulatory proteins at the endoplasmic reticulum (ER) is a conserved feature of eukaryotic cells, disruption of which contributes to disease. While remarkable progress has been made in recent years, mechanisms and genetic requirements for ER-Associated Degradation (ERAD) remain incompletely understood. We recently conducted a screen for genes required for turnover of a model ER translocon-associated substrate of the Hrd1 ubiquitin ligase in .

View Article and Find Full Text PDF

Merestinib inhibits cuproptosis by targeting NRF2 to alleviate acute liver injury.

Free Radic Biol Med

January 2025

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China. Electronic address:

The emergence of cuproptosis, a novel form of regulated cell death, is induced by an excess of copper ions and has been associated with the progression of multiple diseases, including liver injury, cardiovascular disease, and neurodegenerative disorders. However, there are currently no inhibitors available for targeting specific cuproptosis-related pathways in therapy. Here, the compound merestinib (MTB) has been identified as a strong inhibitor of cuproptosis through screening of a kinase inhibitor library.

View Article and Find Full Text PDF

Inducers of Autophagy and Cell Death: Focus on Copper Metabolism.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:

Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!