miR-125a-5p regulation increases phosphorylation of FAK that contributes to imatinib resistance in gastrointestinal stromal tumors.

Exp Cell Res

Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Clinical Pathology/Cytology, Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden. Electronic address:

Published: October 2018

The use of imatinib mesylate has greatly improved the clinical outcome for gastrointestinal stromal tumor (GIST) patients. However, imatinib resistance is still a major clinical challenge, and the molecular mechanisms are not fully understood. We have previously shown that miR-125a-5p and its mRNA target PTPN18 modulate imatinib response in GIST cells. Herein, we evaluated phosphorylated FAK (pFAK) as a candidate downstream target of PTPN18 and the possible association of this regulation with imatinib resistance in GIST. FAK and pFAK expressions were evaluated in GIST882 cells transfected with short hairpin RNA or short interfering RNA targeting PTPN18 or miR-125a-5p mimic, imatinib-resistant GIST882R subclones and clinical samples using Western blot analyses. FAK phosphorylation was blocked using the FAK inhibitor 14 (FAKi) and the effects on cell viability and apoptosis were evaluated using WST-1 assay and cleaved PARP expression. Clinical associations of FAK and pFAK expression with imatinib resistance, KIT mutation and patient outcome were assessed by Fisher's exact test or log-rank test. Over-expression of miR-125a-5p and silencing of PTPN18 increased pFAK, but not FAK, expression in GIST cells. Higher pFAK expression was observed in the GIST882R subclones with acquired imatinib resistance compared to their imatinib-sensitive parental cells. Treatment with FAKi in imatinib-resistant GIST882R cells reduced cell viability and increased apoptosis upon imatinib treatment. Additionally, FAKi could rescue the imatinib resistance effect mediated by miR-125a-5p over-expression. In clinical samples, high FAK and pFAK expressions were associated with KIT mutation status, and high FAK expression was also associated with metastasis in GIST. Higher pFAK was found in cases with shorter overall survival. Our findings highlight an important role for miR-125a-5p regulation and its downstream target pFAK for imatinib resistance in GIST. pFAK and FAK may have prognostic values in GIST.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2018.08.028DOI Listing

Publication Analysis

Top Keywords

imatinib resistance
28
fak pfak
16
fak
10
imatinib
10
pfak
9
mir-125a-5p regulation
8
gastrointestinal stromal
8
target ptpn18
8
gist cells
8
downstream target
8

Similar Publications

The ATP-binding cassette transporter superfamily plays a pivotal role in cellular detoxification and drug efflux. ATP-binding cassette subfamily G member 2 (ABCG2) referred to as the Breast cancer resistance protein has emerged as a key member involved in multidrug resistance displayed by cancer cells. Understanding the molecular basis of substrate and inhibitor recognition, and binding within the transmembrane domain of ABCG2 is crucial for the development of effective therapeutic strategies.

View Article and Find Full Text PDF

Chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia patients largely benefit from an expanding tyrosine kinase inhibitors (TKIs) toolbox that has improved the outcome of both diseases. However, TKI success is continuously challenged by mutation-driven acquired resistance and therefore, close monitoring of clonal genetic diversity is necessary to ensure proper clinical management and adequate response to treatment. Here, we report the case of a ponatinib-resistant Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) patient harboring a BCR::ABL1 p.

View Article and Find Full Text PDF

Imatinib mesylate (IM) is a first-line therapy for chronic myeloid leukemia (CML) and exhibits good therapeutic effects, but not in all patients with CML owing to drug resistance. Our previous study showed that Cyr61 plays a key role in IM resistance in CML cells. Paeoniflorin (PF) is a bioactive compound isolated from the traditional Chinese medicine Paeonia lactiflora Pall that displays anticancer activity.

View Article and Find Full Text PDF

Since their approval, tyrosine kinase inhibitors (TKIs) have been widely used in antitumor therapy for chronic myeloblastic leukemia. Despite being approved by the FDA in 2001 to treat a rare cancer called chronic myeloid leukemia (CML), imatinib and other TKIs remain subjects of research for several reasons, such as their long-term effects, resistance, or molecular mechanisms. This study uses Raman and fluorescence imaging to investigate the cytotoxic effects of two TKIs, imatinib and dasatinib, on human aortic endothelial cells (HAECs).

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer is the most deadly gynecological cancer, with current chemotherapy often ineffective due to drug resistance, especially in advanced stages.
  • A new treatment using a nanoformulation called Bola/IM targets ovarian cancer stem cells (CSCs) more effectively than imatinib alone, utilizing a specific mechanism to inhibit cancer growth and spread.
  • The Bola/IM formulation shows promising results in lab models and enhances the effectiveness of cisplatin, making it a strong candidate for improving treatment for metastatic ovarian cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!