Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is proposed that, at very low loads, greater blood flow restriction (BFR) pressures might be required for muscular adaptation to occur. The cardiovascular and hyperemic response to very low loads combined with relative levels of BFR is unknown. Ninety-seven participants were recruited and assigned to 1 of 4 exercise conditions: 15% of 1-repetition maximum (1RM) without BFR (15/00), 15% 1RM with BFR at 40% of arterial occlusion pressure (AOP) (15/40), 15% of 1RM with BFR at 80% of AOP (15/80), and 70% of 1RM without BFR (70/00). Participants performed 4 sets of unilateral biceps curls. Blood pressure was measured before and after exercise; brachial artery blood flow was measured before exercise, following the second set, and 1 min following exercise. Systolic blood pressure increased following exercise in all conditions (+10 (11) mm Hg, P < 0.0005). Diastolic pressure increased in all but 70/00 (+2 (11) mm Hg, P = 0.107). Brachial artery blood flow increased following the second set of exercise in all but 15/80 (+43.4 (76.8) mL·min, P = 0.348). One minute following exercise and cuff deflation, there were no differences in blood flow between conditions (P > 0.05). Similarly, artery diameter was increased in all conditions except 15/80 (+0.002 (0.041) cm, P = 0.853) following the second set, and increased in all conditions by 1 min following exercise (P < 0.05). In conclusion, exercise-induced hyperemia is blunted with increasing pressures of BFR. There is a modest increase in blood pressure at very low loads of resistance exercise in the upper body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/apnm-2018-0325 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!