Sensitive and accurate detection of highly contagious virus is urgently demanded for disease diagnosis and treatment. Herein, based on a multifunctional aggregation-induced emission luminogen (AIEgen), a dual-modality readout immunoassay platform for ultrasensitive detection of viruses has been successfully demonstrated. The platform is relied on virions immuno-bridged enzymatic hydrolysis of AIEgen, accompanying with the in situ formation of highly emissive AIE aggregates and shelling of silver on gold nanoparticles. As a result, robust turn-on fluorescence and naked-eye discernible plasmonic colorimetry composed dual-signal is achieved. By further taking advantage of effective immunomagnetic enrichment, EV71 virions, as an example, can be specifically detected with a limit of detection down to 1.4 copies/μL under fluorescence modality. Additionally, semiquantitative discerning of EV71 virions is realized in a broad range from 1.3 × 10 to 2.5 × 10 copies/μL with the naked eye. Most importantly, EV71 virions in 24 real clinical samples are successfully diagnosed with 100% accuracy. Comparing to the gold standard polymerase chain reaction (PCR) assay, our immunoassay platform do not need complicated sample pretreatment and expensive instruments. This dual-modality strategy builds a good capability for both colorimetry based convenient preliminary screening and fluorescence based accurate diagnosis of suspect infections in virus-stricken areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.8b05270 | DOI Listing |
Anal Chim Acta
February 2025
Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain. Electronic address:
The COVID-19 outbreak was an important turning point in the development of a new generation of biosensing technologies. The synergistic combination of an immunochromatographic test (lateral flow immunoassays, LFIA) and signal transducers provides enhanced sensitivity and the ability to quantify in the rapid tests. This is possible due to the variety of nanoparticles that can be used as reporter labels.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China.
Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.
View Article and Find Full Text PDFViruses
January 2025
Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
Aims: The screening and diagnosis of dengue virus infection play a crucial role in controlling the epidemic of dengue fever, highlighting the urgent need for a highly sensitive, simple, and rapid laboratory testing method. This study aims to assess the clinical performance of MAGLUMI Denv NS1 in detecting dengue virus NS1 antigen.
Methods: A retrospective study was conducted to assess the sensitivity and specificity of MAGLUMI Denv NS1 using residual samples.
Sensors (Basel)
January 2025
Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.
Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea.
The development of accurate and high-throughput tools for cancer biomarker detection is crucial for the diagnosis, monitoring, and treatment of diseases. In this study, we developed a simple and rapid fluorescence-linked immunosorbent assay (FLISA) using fluorescent dye-conjugated antibody fragments against programmed cell death ligand 1 (PDL1) and human epithelial growth factor receptor 2 (HER2). We optimized key steps in the FLISA process, including antigen immobilization, blocking, and antibody reaction, reading the assay time to 3 h-significantly faster compared to the 23 h duration of usual FLISA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!