Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The protective action of sugars against the denaturation of myoglobin was clarified by X-ray and neutron scattering methods. Different types of sugars such as disaccharides (trehalose, sucrose) and monosaccharides (glucose, fructose) were used. Experimental data and theoretical simulation based on three different solvation models (preferential solvation model, nonpreferential solvation model, and preferential exclusion (hydration) model) indicated that sugar molecules were preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. This trend was more evident for disaccharides. The preferential exclusion shifted gradually to the nonpreferential solvation at higher sugar concentrations. On the protective actions of the sugars against the guanidinium-chloride-mediated denaturation, all sugars, starting from the low concentration of 5% w/v, showed the protective trend toward the protein native structure, especially for the secondary structure. The thermal structural transition temperature of myoglobin was raised by about 4-5 °C, accompanied by amyloid formation, for all hierarchical structural levels. In particular, the oligomer formation of the amyloid aggregates was more suppressed. The above protective action was sugar-dependent. The present results clearly suggest that sugars intrinsically protect the native structure of proteins against chemical and thermal denaturation through the preservative action of the hydration shell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b06572 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!