Stray light analysis has great benefits in designing Raman spectrometry system, which is the sensitive detection system of weak optical signal. In this paper, optical design software and Solidworks are utilized to optimize the optical and mechanical structure. The system resolution is 0.7 nm, and the volume is 110 mm×95 mm, which belongs to portable and miniature Raman spectrometer. Based on the stray light simulation model, we made an analysis of ray tracing simulation for this system. First, the stray light come with the incident ray were suppressed by the aperture stop. Then the receiver of stray light was introduced and improved in the design progress to suppress internal stray light, especially for zero-order diffraction light of plane grating. The improved receiver of stray light is more effectively using the internal space of the spectrometer and analysis results show that a 50% reduction in the number of stray light and stray light normalized irradiance intensity from 10-5 down to 10-7. The analysis shows that the improved receiver of stray light can effectively suppress stray light, which is beneficial to weak signal detection, and provide reference for design and adjustment of the miniature Raman spectrometer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stray light
44
light
12
miniature raman
12
raman spectrometer
12
receiver stray
12
stray
11
improved receiver
8
light effectively
8
analysis
5
improved
4

Similar Publications

Using tremendous photon statistics gained with the stray light aperture of the NuSTAR telescope over 11 years of operation, we set strong limits on the emission of close to monochromatic photons from the radiative decays of putative dark matter sterile neutrinos in the Milky Way. In the energy range of 3-20 keV covered by the NuSTAR, the obtained limits reach the bottom edge of theoretical predictions of realistic models where sterile neutrinos are produced in the early Universe. Only a small region is left to explore, if the sterile neutrinos form the entire dark matter component.

View Article and Find Full Text PDF

From the second half of the nineteenth-century treatment of "imbecile" children in Britain underwent significant change. Examining the period from 1870 to 1920 when imbecility became a discrete category, and a matter of concern in policy and practice, this paper focuses on conceptualizations around fright, idleness, morality, and parental mental state as behavioral, emotional, and psychological causes and attributions of "imbecility" in children. I view this in light of the Victorian emotional culture of "care and control," which was driven by a shift in cost-cutting and fear of the impact of "imbecile children" on society, justifying exclusions, defining boundaries, and driving change.

View Article and Find Full Text PDF

Phototoxic reaction to oral terbinafine due to Tinea capitis in a child.

Acta Dermatovenerol Croat

November 2024

Prof. Ana Bakija-Konsuo, MD, PhD, Clinic for Dermatovenerology CUTIS, Vukovarska 22, Dubrovnik, Croatia;

We report the case of an 18-month-old boy who developed a phototoxic skin reaction to terbinafine on his scalp, ears, and face in the form of disseminated erythematous plaques, which resembled subacute lupus erythematosus (SCLE) in their clinical presentation. Skin changes appeared a short time after the boy was exposed to sunlight during the period of time when he was treated with oral terbinafine due to Microsporum canis fungal scalp infection. Tinea capitis is a common dermatophyte infection primarily affecting prepubertal children (1).

View Article and Find Full Text PDF

We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control.

View Article and Find Full Text PDF

The 'pyro-phototronic effect' plays a nontrivial role in advancing ferroelectric (FE) devices of light detectors, light-emitting diodes, and other smart technologies. In this work, a premier FE copolymer, poly(vinylidene fluoride--trifluoro ethylene) (P(VDF-TrFE)), is reinforced with a lead-free double perovskite, CsSnI, to render profound properties in a hybrid nanostructure. It presents a unique example of the coupling of ferro-, pyro- and piezo-electrics to the 'photoexcitation' of exotic charges that actively empower the synergetic features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!