Here, accumulation of glucosinolates and expression of glucosinolates biosynthesis genes in green and red mustard hairy roots were identified and quantified by HPLC and RT-PCR analyses. The total glucosinolates content of green mustard hairy root (10.09 µg/g dry weight) was 3.88 times higher than that of red mustard hairy root. Indolic glucosinolates (glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin) in green mustard were found at 30.92, 6.95, and 5.29 times higher than in red mustard hairy root, respectively. Conversely, levels of glucotropaeolin (aromatic glucosinolate) was significantly higher in red mustard than in green mustard. Accumulation of glucoraphasatin, an aliphatic glucosinolate, was only observed only in red mustard hairy roots. Quantitative real-time PCR analysis showed that the expression level of genes related to aliphatic and aromatic glucosinolate biosynthesis were higher in red mustard, exception . The expression of , which encodes a key enzyme involved in the indolic glucosinolate biosynthetic pathway, was higher in green mustard than in red mustard. Additionally, to further distinguish between green mustard and red mustard hairy roots, hydrophilic and lipophilic compounds were identified by gas chromatography-mass spectrometry and subjected to principal component analysis. The results indicated that core primary metabolites and glucosinolate levels were higher in the hairy roots of green mustard than in those of red mustard.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104223 | PMC |
http://dx.doi.org/10.1007/s13205-018-1393-x | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Eberhard Karls Universität Tübingen: Eberhard Karls Universitat Tubingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, GERMANY.
The direct incorporation of borondipyrromethene (BODIPY) subunits into the structural backbone of covalent organic frameworks (COFs) gives facile access to porous photosensitizers but is still a challenging task. Here, we introduce β‑ketoenamine-linked BDP‑TFP‑COF, which crystallizes in AA‑stacking mode with hcb topology. A comprehensive characterization reveals high crystallinity and enhanced stability in a variety of solvents, excellent mesoporosity (SABET = 1042 m2 g-1), broad light absorption in the visible region, and red emission upon the exfoliation of few-layer COF nanosheets.
View Article and Find Full Text PDFFood Chem
December 2024
Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Química Analítica e Instrumental, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina. Electronic address:
Brassica microgreens are rich in bioactive compounds, whose concentrations are influenced by environmental and cultivation conditions. This study evaluates the impact of different substrates and fertigation treatments, including sulfur, on the yield, morphology, and phytochemical profile of radish, red cabbage, white mustard, and red mizuna microgreens. Phytochemicals analyzed included total phenolic compounds (TPC), ascorbic acid (AA), and glucosinolates.
View Article and Find Full Text PDFBiol Methods Protoc
December 2024
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), Selektsionnaya St, 14, VNIISSOK, Odintsovo Reg., 143072 Moscow, Russia.
In this protocol for obtaining doubled haploids plants (DH), we propose a new method for microspore isolation. This method is useful for genotypes of the Brassicaceae family with low responsiveness to DH technology. For such crops, it allows increasing the embryo yield several times and sometimes obtaining embryos for the first time.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, 700135, West Bengal, Republic of India.
Heavy metal (HM) contamination in agricultural crops, particularly vegetables, is a matter of global concern due to its potential health risks to humans. Commercially growing vegetable samples were analyzed for heavy metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for leafy greens and fruit vegetables collected during winter from highly susceptible zones, in the vicinity of Kolkata. ICP-MS is advantageous over Atomic Absorption Spectrometry (AAS) for unparalleled accuracy, efficiency, faster turnaround time, cost-effectiveness, etc.
View Article and Find Full Text PDFPlant Dis
November 2024
Chinese Academy of Agricultural Sciences Institute of Vegetables and Flowers, No. 12 Zhongguancun South St., Haidian District, Beijing, China, 100081;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!