Ebola virus (EBOV), a member of the family , is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095993 | PMC |
http://dx.doi.org/10.3389/fimmu.2018.01803 | DOI Listing |
Comput Struct Biotechnol J
December 2024
National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
Unlabelled: The prevention and treatment of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), have emerged as critical global health challenges. Current lipid-lowering pharmacotherapies are associated with side effects, including hepatotoxicity, rhabdomyolysis, and decreased erythrocyte counts, underscoring the urgent need for safer therapeutic alternatives. Hepatocyte nuclear factor 4α (HNF4α) has been identified as a pivotal regulator of lipid metabolism, making it an attractive target for drug development.
View Article and Find Full Text PDFImmunohorizons
January 2025
Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States.
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
The dissemination of tumor cells with ensuing metastasis is responsible for most cancer-related deaths. Cancer vaccines may, by inducing tumor-specific effector T cells, offer a strategy to eliminate metastasizing tumor cells. However, several obstacles remain in the development of effective cancer vaccines, including the identification of adjuvants that enhance the evolvement and efficacy of tumor-specific T cells.
View Article and Find Full Text PDFActa Trop
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China. Electronic address:
Giardia duodenalis is a waterborne zoonotic protozoan that causes gastrointestinal inflammation. Giardiasis and metabolic illnesses share features such as chronic inflammation and intestinal symptoms. Receptor for advanced glycation end products (RAGE) signaling plays a role in metabolic illnesses and intestinal inflammatory responses.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Virology and Vaccine Research and Development Program, Department of Science and Technology-Industrial Technology Development Institute, Taguig City, Metro Manila 1631, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig City, Metro Manila 1631, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Metro Manila 1000, Philippines. Electronic address:
Nipah virus (NiV) is a re-emerging zoonotic pathogen with a high mortality rate and no effective treatments, prompting the search for new antiviral strategies. While conventional antiviral drugs are often limited by issues such as poor specificity, off-target effects, and resistance development, nanobodies offer distinct advantages. These small, single-domain antibodies exhibit high specificity and stability, making them ideal candidates for antiviral therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!