We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop+Pesticide model. Simulations are performed of hive population trajectories with and without pesticide exposure to determine the effects of weather, queen strength, foraging activity, colony resources, and Varroa populations on colony growth and survival. The daily resolution of the model allows us to conditionally identify sensitivity metrics. Simulations indicate queen strength and forager lifespan are consistent, critical inputs for colony dynamics in both the control and exposed conditions. Adult contact toxicity, application rate and nectar load become critical parameters for colony dynamics within exposed simulations. Daily sensitivity analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104650PMC
http://dx.doi.org/10.1016/j.ecolmodel.2018.02.010DOI Listing

Publication Analysis

Top Keywords

honey bee
8
sensitivity analysis
8
pesticide exposure
8
queen strength
8
colony dynamics
8
colony
5
sensitivity
4
sensitivity analyses
4
analyses simulating
4
simulating pesticide
4

Similar Publications

Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.

View Article and Find Full Text PDF

The Anatolian honey bee (Apis mellifera anatoliaca) and Bombus terrestris are important species in Türkiye. In this context, protecting the health of these honey bees is particularly important. Lactic acid bacteria (LAB) and acetic acid bacteria (AAB) are very important for the health of bees.

View Article and Find Full Text PDF

Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.

View Article and Find Full Text PDF

Plants produce floral nectar as a reward for pollinators, which contains carbohydrates and amino acids (AAs). We designed experiments to test whether pollinators could exert selection pressure on the profiles of AAs in nectar. We used HPLC to measure the free AAs and sugars in the nectar of 102 UK plant species.

View Article and Find Full Text PDF

Regional patterns and climatic predictors of viruses in honey bee (Apis mellifera) colonies over time.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

Honey bee viruses are serious pathogens that can cause poor colony health and productivity. We analyzed a multi-year longitudinal dataset of abundances of nine honey bee viruses (deformed wing virus A, deformed wing virus B, black queen cell virus, sacbrood virus, Lake Sinai virus, Kashmir bee virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute paralysis virus) in colonies located across Canada to describe broad trends in virus intensity and occurrence among regions and years. We also tested climatic variables (temperature, wind speed, and precipitation) as predictors in an effort to understand possible drivers underlying seasonal patterns in viral prevalence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!