A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heterobinuclear Light Absorber Coupled to Molecular Wire for Charge Transport across Ultrathin Silica Membrane for Artificial Photosynthesis. | LitMetric

Heterobinuclear Light Absorber Coupled to Molecular Wire for Charge Transport across Ultrathin Silica Membrane for Artificial Photosynthesis.

ACS Appl Mater Interfaces

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , University of California, Berkeley , California 94720 , United States.

Published: September 2018

Coupling of robust, all-inorganic heterobinuclear light absorbers to metal oxide catalysts for water oxidation across an ultrathin product-separating silica membrane requires charge transfer through organic molecular wires embedded in the silica. A synthetic approach for assembling the bimetallic units on the silica surface is introduced that is compatible with the presence of encapsulated organic molecules. Accurate selection and fine tuning of the concentration of embedded conducting wires are enabled by a two-step method consisting of surface attachment of a tripodal anchor, trimethoxysilyl aniline, followed by attachment of p-oligo(phenylene vinylene) through amide linkage. Each step of the assembly process was monitored and characterized by a combination of Fourier transform infrared, Fourier transform-Raman, and UV-vis spectroscopy techniques. Hole transfer was observed from transient Co, formed by TiOCo → TiOCo charge transfer excitation of the chromophore, to p-oligo(phenylene vinylene) molecule within the 8 ns width of the photolysis laser pulse by transient optical absorption spectroscopy of the wire radical cation. The rectifying property of the light absorber-wire assembly enabled by appropriate selection of redox potentials of metals and embedded wire obviates the need for a molecularly defined linkage between the components. Combined with the previously observed ultrafast hole injection from the embedded wires to Co oxide catalyst, the result implies visible-light-induced hole transfer from visible-light-excited binuclear light absorber to water oxidation catalyst across the silica separation membrane in a few nanoseconds or faster. Demonstration and understanding of this interfacial charge-transfer step is critical for developing nanoscale core-shell architectures for complete photosynthetic cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b11684DOI Listing

Publication Analysis

Top Keywords

heterobinuclear light
8
light absorber
8
silica membrane
8
water oxidation
8
charge transfer
8
p-oligophenylene vinylene
8
hole transfer
8
silica
5
absorber coupled
4
coupled molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!