Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The basal ganglia play key roles in adaptive behaviors guided by reward and punishment. However, despite accumulating knowledge, few studies have tested how heterogeneous signals in the basal ganglia are organized and coordinated for goal-directed behavior. In this study, we investigated neuronal signals of the direct and indirect pathways of the basal ganglia as rats performed a lever push/pull task for a probabilistic reward. In the dorsomedial striatum, we found that optogenetically and electrophysiologically identified direct pathway neurons encoded reward outcomes, whereas indirect pathway neurons encoded no-reward outcome and next-action selection. Outcome coding occurred in association with the chosen action. In support of pathway-specific neuronal coding, light activation induced a bias on repeat selection of the same action in the direct pathway, but on switch selection in the indirect pathway. Our data reveal the mechanisms underlying monitoring and updating of action selection for goal-directed behavior through basal ganglia circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2018.08.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!