Objective: The objective of this study was to quantitatively measure the three-dimensional (3D) structure of the vocal folds in normal subjects and in patients with different types of cricoarytenoid dislocation. We will analyze differences in parameters between the groups and also determine if any morphologic parameters possess utility in distinguishing the type and the degree of cricoarytenoid dislocation.
Study Design: This retrospective study was conducted using university hospital data.
Methods: Subjects' larynges were scanned using dual-source computed tomography (CT). The normal subjects were divided into deep-inhalation and phonation groups, and patients with cricoarytenoid joint dislocation were divided into anterior-dislocation and posterior-dislocation groups. Membranous vocal fold length and width were measured directly on the thin-section CT images. Vocal fold and airway 3D models were constructed using Mimics software and used in combination to measure vocal fold thickness, subglottal convergence angle, and oblique angle of the vocal folds.
Results: The phonation group displayed a greater vocal fold width, greater oblique angle, thinner vocal folds, and a smaller subglottal convergence angle than those of the deep-inhalation group (P < 0.05). The anterior-dislocation group displayed a smaller oblique angle and subglottal convergence angle than the posterior-dislocation group (P < 0.05).
Conclusions: The 3D structure of the vocal folds during deep inhalation and phonation can be accurately measured using dual-source CT and laryngeal 3D reconstruction. As the anterior-dislocation group yielded negative values for the oblique angle and the posterior-dislocation group yielded positive values, the oblique angle of the vocal folds may possess utility for distinguishing the type and for quantitatively determining the degree of cricoarytenoid dislocation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvoice.2018.02.024 | DOI Listing |
J Voice
January 2025
Department of Otolaryngology-Head and Neck Surgery, UCSF Voice and Swallowing Center, UCSF School of Medicine, San Francisco, CA. Electronic address:
Background: Laryngeal respiratory dystonia (LRD) is diagnosed based on clinical presentation, patient history, and physical examination. Key indicators include dyspnea, desynchronized breathing patterns, and laryngoscopic findings that reveal vocal fold adduction during inspiration. Treatment for LRD remains controversial and often yields limited effectiveness.
View Article and Find Full Text PDFJ Voice
January 2025
Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan.
Introduction: Vocal distortion, also known as a scream or growl, is used worldwide as an essential technique in singing, especially in rock and metal, and as an ethnic voice in Mongolian singing. However, the production mechanism of vocal distortion is not yet clearly understood owing to limited research on the behavior of the larynx, which is the source of the distorted voice.
Objectives: This study used high-speed digital imaging (HSDI) to observe the larynx of professional singers with exceptional singing skills and determine the laryngeal dynamics in the voice production of various vocal distortions.
Laryngoscope Investig Otolaryngol
February 2025
Objective: To investigate the impact of music on patient tolerance during office-based laryngeal surgery (OBLS).
Methods: All patients undergoing OBLS between February 2024 to June 2024 were invited to participate in this study. They were divided into two subgroups, those with music in the background during surgery and those without.
Laryngoscope Investig Otolaryngol
February 2025
Objectives: This study aimed to investigate the histological and ultrastructural features of the elastic cartilage at the tip of the vocal process in the arytenoid cartilage, which is essential for laryngeal biomechanics.
Methods: Five larynges, including the vocal folds and epiglottis, were examined using transmission electron microscopy. The elastic cartilage at the tip of the vocal process was compared to the epiglottic cartilage within the same larynx to elucidate structural differences.
Laryngoscope Investig Otolaryngol
February 2025
Objective: Endoscopic arytenoid abduction lateropexy (EAAL) is a minimally invasive surgical technique for the immediate management of bilateral vocal fold palsy (BVFP). Specifically, it achieves a stable and adequate airway by lateralizing the arytenoid cartilage without resecting laryngeal structures. Thus, this study evaluated the effect of EAAL on swallowing in cases of BVFP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!