Objective: This study was undertaken to investigate the genetic characteristics of Berkshire (BS), Landrace (LR), and Yorkshire (YS) pig breeds raised in the Great Grandparents pig farms using the single nucleotide polymorphisms (SNP) information.
Methods: A total of 25,921 common SNP genotype markers in three pig breeds were used to estimate the expected heterozygosity (HE), polymorphism information content, F-statistics (FST), linkage disequilibrium (LD) and effective population size (Ne).
Results: The chromosome-wise distribution of FST in BS, LR, and YS populations were within the range of 0-0.36, and the average FST value was estimated to be 0.07±0.06. This result indicated some level of genetic segregation. An average LD (r2) for the BS, LR, and YS breeds was estimated to be approximately 0.41. This study also found an average Ne of 19.9 (BS), 31.4 (LR), and 34.1 (YS) over the last 5th generations. The effective population size for the BS, LR, and YS breeds decreased at a consistent rate from 50th to 10th generations ago. With a relatively faster Ne decline rate in the past 10th generations, there exists possible evidence for intensive selection practices in pigs in the recent past.
Conclusion: To develop customized chips for the genomic selection of various breeds, it is important to select and utilize SNP based on the genetic characteristics of each breed. Since the improvement efficiency of breed pigs increases sharply by the population size, it is important to increase test units for the improvement and it is desirable to establish the pig improvement network system to expand the unit of breed pig improvement through the genetic connection among breed pig farms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409452 | PMC |
http://dx.doi.org/10.5713/ajas.18.0304 | DOI Listing |
Breast Cancer Res
December 2024
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Creating fast, non-invasive, precise, and specific diagnostic tests is crucial for enhancing cancer treatment outcomes. Among diagnostic methods, those relying on nucleic acid detection are highly sensitive and specific. Recent developments in diagnostic technologies, particularly those leveraging Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are revolutionizing cancer detection, providing accurate and timely results.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
Tumor organoids have emerged as powerful tools for in vitro cancer research due to their ability to retain the structural and genetic characteristics of tumors. Nevertheless, the absence of a complete tumor microenvironment (TME) limits the broader application of organoid models in immunological studies. Given the critical role of immune cells in tumor initiation and progression, the co-culture model of organoids and peripheral blood mononuclear cells (PBMCs) may provide an effective platform for simulating the interactions between immune and tumor cells in vitro.
View Article and Find Full Text PDFCommun Biol
December 2024
Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications.
View Article and Find Full Text PDFSci Data
December 2024
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
The barbel chub Squaliobarbus curriculus, is an economically important freshwater fish in China. The fishery production of the wild populations has declined dramatically, making the development of aquaculture urgently needed. However, the lack of high-quality genome has impeded its artificial breeding and genetic breeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!