Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quality assurance (QA) is vital for ensuring the integrity of processed neuroimaging data for use in clinical neurosciences research. Manual QA (visual inspection) of processed brains for cortical surface reconstruction errors is resource-intensive, particularly with large datasets. Several semi-automated QA tools use quantitative detection of subjects for editing based on outlier brain regions. There were two project goals: (1) evaluate the assumption that statistical outliers are related to errors of cortical extension, and (2) examine whether error identification and correction significantly impacts estimation of cortical parameters and established brain-behavior relationships. T1 MPRAGE images (N = 530) of healthy adults were obtained from the NKI-Rockland Sample and reconstructed using Freesurfer 5.3. Visual inspection of T1 images was conducted for: (1) participants (n = 110) with outlier values (z scores ±3 SD) for subcortical and cortical segmentation volumes (outlier group), and (2) a random sample of remaining participants (n = 110) with segmentation values that did not meet the outlier criterion (non-outlier group). The outlier group had 21% more participants with visual inspection-identified errors than participants in the non-outlier group, with a medium effect size (Φ = 0.22). Nevertheless, a considerable portion of images with errors of cortical extension were found in the non-outlier group (41%). Although nine brain regions significantly changed size from pre- to post-editing (with effect sizes ranging from 0.26 to 0.59), editing did not substantially change the correlations of neurocognitive tasks and brain volumes (ps > 0.05). Statistically-based QA, although less resource intensive, is not accurate enough to supplant visual inspection. We discuss practical implications of our findings to guide resource allocation decisions for image processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11682-018-9951-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!