A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying errors in Freesurfer automated skull stripping and the incremental utility of manual intervention. | LitMetric

Quality assurance (QA) is vital for ensuring the integrity of processed neuroimaging data for use in clinical neurosciences research. Manual QA (visual inspection) of processed brains for cortical surface reconstruction errors is resource-intensive, particularly with large datasets. Several semi-automated QA tools use quantitative detection of subjects for editing based on outlier brain regions. There were two project goals: (1) evaluate the assumption that statistical outliers are related to errors of cortical extension, and (2) examine whether error identification and correction significantly impacts estimation of cortical parameters and established brain-behavior relationships. T1 MPRAGE images (N = 530) of healthy adults were obtained from the NKI-Rockland Sample and reconstructed using Freesurfer 5.3. Visual inspection of T1 images was conducted for: (1) participants (n = 110) with outlier values (z scores ±3 SD) for subcortical and cortical segmentation volumes (outlier group), and (2) a random sample of remaining participants (n = 110) with segmentation values that did not meet the outlier criterion (non-outlier group). The outlier group had 21% more participants with visual inspection-identified errors than participants in the non-outlier group, with a medium effect size (Φ = 0.22). Nevertheless, a considerable portion of images with errors of cortical extension were found in the non-outlier group (41%). Although nine brain regions significantly changed size from pre- to post-editing (with effect sizes ranging from 0.26 to 0.59), editing did not substantially change the correlations of neurocognitive tasks and brain volumes (ps > 0.05). Statistically-based QA, although less resource intensive, is not accurate enough to supplant visual inspection. We discuss practical implications of our findings to guide resource allocation decisions for image processing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11682-018-9951-8DOI Listing

Publication Analysis

Top Keywords

visual inspection
12
non-outlier group
12
brain regions
8
errors cortical
8
cortical extension
8
participants n = 110
8
outlier group
8
cortical
5
outlier
5
group
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!