For the first time, real effluents from the micro-electronics industry were treated by paired advanced electrocatalysis, combining electro-Fenton (EF) with anodic oxidation (AO). A detailed characterization of the effluents was performed, showing that isopropanol (IPA) and acetone were the main constituents of the wastewater. Both compounds were completely degraded during the first 120 min of treatment. By monitoring the degradation intermediates, an oxidation pathway was proposed, which includes short-chain carboxylic acids as the main end-organic compounds. While carbon brush served as the cathode, two anode materials were utilized: boron-doped diamond (BDD) and carbon-PTFE cloth (CC). Despite the lower mineralization efficiency showed by CC as compared to BDD (76.5% of TOC removal with CC vs 94.0% of TOC removal with BDD after 4 h), CC showed potential to increase the BOD/COD ratio of the effluent that reached 0.7 after only 45 min (0.6 in 30 min with BDD). These results suggest that the electrolysis time could be kept short, improving the cost-effectiveness of the process, especially if CC is used. Overall, the results point out the suitability of advanced electrocatalysis to treat real electronics wastewater with low energy requirements, short treatment times and cost-effective electrode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2018.08.023 | DOI Listing |
Phys Chem Chem Phys
January 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China.
Electrochemical nitrite (NO) is a promising technology for NO removal and a sustainable method for generating valuable ammonia (NH), but this process is intricate and generates other byproducts. In this work, we propose a facile and low-cost method for the preparation of a CuMoO nanosheet array, which can serve as an efficient electrocatalyst for the reduction of NO to NH. The morphology of CuMoO can be adjusted by controlling the synthesis conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!