Photocurable coatings prepared by emulsion polymerization present chelating properties.

Colloids Surf B Biointerfaces

Department of Food Science, Cornell University, Ithaca, NY, 14853, USA. Electronic address:

Published: December 2018

Herein, we present a method to synthesize a photocurable metal chelating copolymer coating via emulsion polymerization to enable a facile coat/cure preparation of metal chelating materials. The copolymer coating was a poly(n-butyl acrylate) based polymer (79 mol %) synthesized by emulsion polymerization, with iminodiacetic acid (2 mol %) and benzophenone moieties (19 mol %) to impart metal chelating and photocrosslinking properties, respectively. The copolymer was applied onto polypropylene films and was photocured (365 nm, 225 mW/cm, 180 s) to produce metal chelating film. The resulting metal chelating film had activity towards Fe by chelating 10.9 ± 1.9 nmol/cm, 47.9 ± 5.3 nmol/cm, and 156.0 ± 13.8 nmol/cm of Fe at pH 3.0, pH 4.0, and pH 5.0, respectively. The metal chelating film controlled transition metal induced ascorbic acid degradation by extending half-life of ascorbic acid degradation from 6 days to 20 days at pH 3.0, and from 3 days to 6 days at pH 5.0, demonstrating its potential as an antioxidant active packaging material. Despite the introduction of polar iminodiacetic acid chelating moieties, the poly(n-butyl acrylate) based coatings retained low surface energies (24.0 mN/m) necessary to mitigate fouling and enable product release in packaging applications. This work overcomes a major knowledge gap in the area of functional coatings, by demonstrating a method by which critical properties such as control of surface energy, retention of mechanical properties, and scalability are integrated into the structure of a functional coating. The photocurable polymer coatings as reported here enable scalable production of active materials with metal chelating functionality, with applications in water treatment, trace metal detection, protein purification, and active packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2018.08.020DOI Listing

Publication Analysis

Top Keywords

metal chelating
28
emulsion polymerization
12
chelating film
12
days days
12
chelating
10
metal
9
copolymer coating
8
polyn-butyl acrylate
8
acrylate based
8
iminodiacetic acid
8

Similar Publications

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

The Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!