A vacuum membrane distillation bioreactor (VMDBR) by permeate fractional condensation and mechanical vapor compression with PTFE membrane was developed for bioethanol production. Cell concentration of 11.5 g/L, glucose consumption rate of 5.2 g/L/h and ethanol productivity of 2.3 g/L/h could be obtained with fermentation continues lasting for 140 h. Membrane flux of over 10 kg/m/h could be obtained for model solution separation. Higher temperature and flow rate could promote membrane separation. Membrane flux could be reduced to about 2000 g/m/h with fermentation proceeding owing to the deposited cell on membrane surface. The membrane separation performance could be resumed by water rinse. High ethanol concentration of 421 g/L could be obtained by permeate fractional condensation with the process separation factor increased to 19.2. Energy of only 14 MJ/kg was required in VMDBR and the energy consumption would be reduced further if the compressed vapor could be used to heat the feed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.08.055 | DOI Listing |
Drug Deliv Transl Res
December 2024
Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
Ablative fractional laser-assisted drug delivery has gained attention as a promising method for enhancing dermal drug absorption and improving therapeutic outcomes in dermatological conditions, particularly for hypertrophic and keloid scars. However, despite the growing number of clinical trials and case reports supporting its efficacy, there remains a scarcity of robust evidence on the topical bioavailability and dermato-pharmacokinetics of drugs in human subjects. This study aimed to examine the enhancement of triamcinolone acetonide (TAC) bioavailability following treatment with a fractional Erbium-Doped Yttrium Aluminum Garnet (Er: YAG) laser.
View Article and Find Full Text PDFMacromolecules
November 2024
School of Mathematical and Physical Sciences, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
A range of charge-stabilized aqueous polyurethane (PU) dispersions comprising hard segments formed from hydrogenated methylene diphenyl diisocyanate (HMDI) with dimethylolpropionic acid (DMPA) and ethylenediamine, and soft segments of poly(tetramethylene oxide) of different molecular weights are synthesized. Characterization of the dispersions by mass spectrometry, gel permeation chromatography, small-angle X-ray scattering, atomic force microscopy, and infrared spectroscopy shows that they are composed of PUs self-assembled into spherical particles (primary population) and supramolecular structures formed by hydrogen-bonded HMDI and DMPA acid-rich fragments (secondary population). Analysis of the scattering patterns of the dispersions, using a structural model based on conservation of mass, reveals that the proportion of supramolecular structures increases with DMPA content.
View Article and Find Full Text PDFAAPS PharmSciTech
August 2024
Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA.
RSC Adv
July 2024
School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384 China
Hybrid inorganic particles combined with polymers are widely used to modify the properties of polymer membranes. However, the mechanism by which particles affect membranes remains unclear. This study investigates SiO-hybridized PVDF membranes through molecular dynamic simulation, focusing on the interaction between SiO clusters and PVDF chains.
View Article and Find Full Text PDFAAPS PharmSciTech
June 2024
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!