Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Benzothiadiazole (BTH) acts as a priming agent in plant defence leading to a reduction in penetration and development of the root-knot nematode Meloidogyne incognita in susceptible tomato roots. Changes in lignin biosynthesis in the susceptible tomato cv. Roma following nematode infection and/or BTH treatment were investigated in comparison to the resistant cv. Rossol. Both untreated and BTH-treated susceptible infected roots (galls) showed an increased level of expression of lignin synthesis-related genes (PAL, C4H, HCT and F5H) at early times during infection (2-4 days post inoculation). Peroxidase (soluble and cell-wall bound, POX) enzyme activities increased after inoculation with M. incognita and the priming effect of BTH treatment was evident at later stages of infection (7 days post inoculation). As expected, the induction of PAL and POXs and lignin synthesis-related genes was faster and greater in resistant roots after infection. Histochemical analysis revealed accumulation of higher lignin levels at later infection stages in BTH-treated galls compared to untreated ones. Furthermore, the monomer composition of lignin indicated a different composition in guaiacyl (G) and syringyl (S) units in BTH-treated galls compared to untreated galls. The increase in G units made G/S ratio similar to that in the resistant genotype. Overall, lignin played a critical role in tomato defence to M. incognita in response to BTH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2018.07.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!