Comparative analysis of the tetraspanin gene family in six teleost fishes.

Fish Shellfish Immunol

Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.

Published: November 2018

Tetraspanins are a family of membrane proteins, which play important roles in many aspects of cell biology and physiology via binding other tetraspanins or proteins. In this study, we identified 251 putative tetraspanin genes in 6 teleost fishes. Conserved gene organization and motif distribution suggested their functional relevance existing in each group. Synteny analyses implied conserved and dynamic evolution characteristics of this gene family in several vertebrates. We also found that some recombination events have accelerated the evolution of this gene family. Moreover, a few positive selection sites were identified. Expression patterns of some tetraspanins were further studied under organophosphorus stress using transcriptome sequencing. Functional network analyses identified some interacting genes that exhibited 174 interactions, which reflected the diversity of tetraspanin binding proteins. The results will provide a foundation for the further functional investigation of the tetraspanin genes in fishes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2018.08.048DOI Listing

Publication Analysis

Top Keywords

gene family
12
teleost fishes
8
tetraspanin genes
8
comparative analysis
4
tetraspanin
4
analysis tetraspanin
4
gene
4
tetraspanin gene
4
family
4
family teleost
4

Similar Publications

Pontederia cordata L. is an aquatic ornamental plant native to the Americas, but has been widely distributed in South Asia, Australia, and Europe. The genetic mechanisms behind its rapid adaptation and spread have not yet been well understood.

View Article and Find Full Text PDF

Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).

Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.

View Article and Find Full Text PDF

Molecular and functional convergences associated with complex multicellularity in Eukarya.

Mol Biol Evol

January 2025

Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.

A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.

View Article and Find Full Text PDF

Citrus transcription factor CsERF1 is involved in the response to citrus tristeza disease.

Front Plant Sci

January 2025

National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China.

Introduction: Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus.

View Article and Find Full Text PDF

Obligate root parasitic plants of the Orobanchaceae family exhibit an intricate germination behavior. The host-dependent germination process of these parasites has prompted extensive research into effective control methods. While the effect of biomaterials such as amino acids and microRNA-encoded peptides have been explored, the effect of double-stranded RNAs (dsRNAs) has remained unexamined during the germination process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!