Aims: Neuroblastoma is a rare cancer that affects children, mostly under the age of 5. This type of cancer starts in very early forms of immature nerve cells or developing cells found in embryo or fetus. To date cisplatin represents one of the most potent antitumor agent known, however, the onset of systemic side effects and the induction of drug resistance limit its use in the clinic for long-term treatment. In the present study we have analysed the effects of a new compound of platinum(IV) conjugates, named Pt(IV)Ac-POA, which is able to generate a synergistic antineoplastic action when released along with cisplatin upon intracellular Pt(IV) → Pt(II) reduction.

Main Methods: To assess the growth inhibition of the compounds under investigation, a cell viability test, i.e. the resazurin reduction assay was used on the B50 neuroblastoma rat cells. Further analysis on the cell cycle and metabolic alterations were carried out through flow cytometry. Morphological changes and activation of different cell death pathways after treatment, were observed at transmission electron microscope and by immunocytochemistry at fluorescence microscopy. Protein expression was examined by western blot analysis.

Key Findings: This compound bearing bioactive axial ligand, such as the active histone deacetylase inhibitor (HDACi) (2-propynyl)octanoic acid (POA), induced cell death through different pathways at a concentration ten times lower than cisplatin.

Significance: The results showed that Pt(IV)Ac-POA could represent a promising improvement of Pt-based chemotherapy against neuroblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.08.048DOI Listing

Publication Analysis

Top Keywords

b50 neuroblastoma
8
neuroblastoma rat
8
rat cells
8
cell death
8
death pathways
8
platinum-based prodrug
4
prodrug candidate
4
candidate anticancer
4
anticancer effects
4
effects b50
4

Similar Publications

Long-term effects after treatment with platinum compounds, cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)]: Autophagy activation in rat B50 neuroblastoma cells.

Toxicol Appl Pharmacol

February 2019

Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Italy. Electronic address:

Cisplatin (cisPt), among the best known components of multi-drug front-line therapies used for the treatments of solid tumors, such as the childhood neuroblastoma, acts through DNA linking. Nevertheless, the cisPt effectiveness is compromised by the onset of severe side effects, including neurotoxicity that results in neurodegeneration, cell death, and drug-resistance. In the field of experimental oncology, aimed at overcoming cytotoxicity and chemoresistance, great efforts are devoted to the synthesis of new platinum-based drugs, such as [Pt(O,O'-acac)(γ-acac)(DMS)] (PtAcacDMS), which shows a specific reactivity with sulfur residues of enzymes involved in apoptosis.

View Article and Find Full Text PDF

A new platinum-based prodrug candidate: Its anticancer effects in B50 neuroblastoma rat cells.

Life Sci

October 2018

Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, via Ferrata 9, 27100 Pavia, Italy. Electronic address:

Aims: Neuroblastoma is a rare cancer that affects children, mostly under the age of 5. This type of cancer starts in very early forms of immature nerve cells or developing cells found in embryo or fetus. To date cisplatin represents one of the most potent antitumor agent known, however, the onset of systemic side effects and the induction of drug resistance limit its use in the clinic for long-term treatment.

View Article and Find Full Text PDF

Cerium oxide nanoparticles (nanoceria) are regarded as one of the most promising inorganic antioxidants for biomedical applications. Considering nanoceria as a potential therapeutic agent, we aimed to develop a robust system for its intracellular delivery using layer-by-layer polyelectrolyte microcapsules. We have shown that citrate-stabilized cerium oxide nanoparticles can be effectively incorporated into the structure of polyelectrolyte microcapsules made from biodegradable and nonbiodegradable polymers.

View Article and Find Full Text PDF

Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography⁻mass spectrometry.

View Article and Find Full Text PDF

Low intensity repetitive magnetic stimulation of neural tissue modulates neuronal excitability and has promising therapeutic potential in the treatment of neurological disorders. However, the underpinning cellular and biochemical mechanisms remain poorly understood. This study investigates the behavioural effects of low intensity repetitive magnetic stimulation (LI-rMS) at a cellular and biochemical level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!