Success in obtaining higher-order twistarenes with precise structures is very important for fundamentally understanding the relationship between the structures and physical properties/optoelectronic applications. In this research, by using the advantages from a retro-Diels-Alder process (clean reaction) and the cross-conjugated nature of the pyrene unit, a novel dodeca-twistarene was prepared for the first time. Its structure, confirmed by single-crystal XRD analysis, indicates that it possesses a twisted angle (≈30°), and two neighboring molecules in the crystal lattice are perpendicular to each other because of the twisted character and the strong intermolecular CH-π interactions. However, its basic physicochemical properties suggest its instability in air derives from its elevated HOMO energy level, although NICS calculations confirm that the pyrene units contribution poorly to the π conjugation of the overall molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201808779 | DOI Listing |
Angew Chem Int Ed Engl
October 2018
School of Materials Science and Engineering, Nanyang Technological University Singapore, 639798, Singapore, Singapore.
Success in obtaining higher-order twistarenes with precise structures is very important for fundamentally understanding the relationship between the structures and physical properties/optoelectronic applications. In this research, by using the advantages from a retro-Diels-Alder process (clean reaction) and the cross-conjugated nature of the pyrene unit, a novel dodeca-twistarene was prepared for the first time. Its structure, confirmed by single-crystal XRD analysis, indicates that it possesses a twisted angle (≈30°), and two neighboring molecules in the crystal lattice are perpendicular to each other because of the twisted character and the strong intermolecular CH-π interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!