A series of near-infrared (NIR)-responsive unsymmetrical squaraine dyes (ISQ1-3) incorporating a fused indenoquinaldine-based donor have been designed and synthesized. C alkyl chains were incorporated at the sp -hybridized carbon center of the indene unit of the indenoquinaldine in an out-of-plane orientation to control dye aggregation on the surface of titanium dioxide, and indole (ISQ1), benzo[e]indole (ISQ2), and quinoline (ISQ3) moieties were included as the donor component bearing the anchoring carboxy group to extend the absorption in the NIR region and to systematically study the effect of the electronic modification on the performance of dye-sensitized solar cells (DSSC). All the dyes exhibit intense absorption (ϵ≥10 m cm ) in the NIR region, and the dye-adsorbed TiO films exhibit broad panchromatic absorption. The incident photon-to-current efficiency (IPCE) spectrum of the ISQ3-based DSSC device displays a panchromatic IPCE response up to 880 nm. Additionally, the ISQ3-sensitized device provides the best efficiency of 4.15 % with a short circuit current density (J ) of 10.02 mA cm , open-circuit voltage (V ) of 0.58 V, and fill factor (ff) of 72 % in the presence of 10 equivalents of 3α,7α-dihydroxy-5β-cholanic acid (CDCA). Electrochemical impedance spectroscopy analysis showed attenuated charge recombination in the ISQ3-sensitized DSSC, which contributes to its higher value of V compared with the other dyes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201803062 | DOI Listing |
Biosensors (Basel)
September 2024
Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka 808-0196, Japan.
Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing the design and synthesis of NIR-sensitive dye-peptide conjugate () for the sensitive and selective monitoring of trypsin activity by fluorescence ON/OFF sensing. The current research deals with the design and synthesis of three unsymmetrical squaraine dyes , , and along with a dye-peptide conjugate as a trypsin-specific probe followed by their photophysical characterizations.
View Article and Find Full Text PDFACS Omega
April 2024
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
Indoline (In) and aniline (An) donor-based visible light active unsymmetrical squaraine (SQ) dyes were synthesized for dye-sensitized solar cells (DSSCs), where the position of An and In units was changed with respect to the anchoring group (carboxylic acid) to have In-SQ-An-COH and An-SQ-In-COH sensitizers, . Linear or branched alkyl groups were functionalized with the N atom of either In or An units to control the aggregation of the dyes on TiO. exhibit an isomeric π-framework where the squaric acid unit is placed in the middle, where and dyes possess the anchoring group connected with the An donor, and , , and dyes having the anchoring group connected with the In donor.
View Article and Find Full Text PDFChemistry
May 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China.
The relationship among chemical structure, physicochemical property and aggregation behavior of organic functional material is an important research topic. Here, we designed and synthesized three bis(squaraine) dyes BSQ1, BSQ2 and BSQ3 through the combination of two kinds of unsymmetrical azulenyl squaraine monomers. Their physicochemical properties were investigated in both molecular and aggregate states.
View Article and Find Full Text PDFPhotochem Photobiol
January 2024
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India.
Squaraine dyes possess sharp far-red active transition with high extinction coefficient and form aggregates on TiO surface. Aggregation of dyes on TiO has been considered as a detrimental factor for DSSC device performance, which can be controlled by appending alkyl groups to the dye structures. Hence by integrating alkylated (alkyl groups with both in-plane and out-of-plane) aryl group with indoline moiety to make it compatible with other electrolytes and for controlling the dye-aggregation, a series of squaraine acceptor-based dyes SQA4-6 have been designed and synthesized.
View Article and Find Full Text PDFLangmuir
January 2024
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.
Visible-light-active alkyl group-wrapped unsymmetrical squaraine dyes - were synthesized, featuring an indoline donor and pyridine and carboxylic acid anchoring groups. Their photophysical, electrochemical, and photovoltaic characteristics were examined by fabricating a dye-sensitized solar cell (DSSC) device. Both carboxylic acid and pyridine anchoring groups containing squaraine dyes and possess similar photophysical and electrochemical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!