Aim: The aim of the study was to investigate whether amplitude-integrated electroencephalography (aEEG) and cerebral magnetic resonance imaging (MRI) in preterm piglets would provide measures of cerebral functional, microstructural and anatomical maturation, which might reflect the signs of functional brain immaturity, documented in preterm piglets.
Methods: During July-October 2013 at the NEOMUNE Centre, Copenhagen University, Denmark, 31 preterm (90% gestation) and 10 term piglets underwent aEEG on days 1, 2, 4 and 11, and MRI on day 25. Physical activity levels were recorded.
Results: Preterm showed delayed neonatal arousal and physical activity, relative to term piglets. Preterm piglets had lower growth rates and brain volume than term piglets, but aEEG patterns were similar. MRI mean diffusivity was also similar, but fractional anisotropy (FA) was lower in preterm piglets (p < 0.001).
Conclusion: Functional brain maturation, as assessed by aEEG, was relatively advanced in preterm piglets. Conversely, the low FA in the preterm piglets suggests that the white matter microstructure remains less mature in preterm compared to term piglets at postnatal day 25. The results might be utilised to define whether and how preterm piglets may contribute to preclinical models for brain development in preterm infants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apa.14556 | DOI Listing |
PNAS Nexus
December 2024
Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden.
Reduced serum level of insulin-like growth factor 1 (IGF-1), a major regulator of perinatal development, in extremely preterm infants has been shown to be associated with neurodevelopmental impairment. To clarify the mechanism of IGF-1 transport at the blood-cerebrospinal fluid (CSF) barrier of the immature brain, we combined studies of in vivo preterm piglet and rabbit models with an in vitro transwell cell culture model of neonatal primary murine choroid plexus epithelial (ChPE) cells. We identified IGF-1-positive intracellular vesicles in ChPE cells and provided data indicating a directional transport of IGF-1 from the basolateral to the apical media in extracellular vesicles (EVs).
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
J Pediatr Surg
September 2024
Center for Regenerative Medicine - Abigail Wexner Research Institute, and Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Division of Pediatric Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA. Electronic address:
Background: Necrotizing enterocolitis (NEC) remains a devastating intestinal disease that affects 5-7% of preterm neonates. Remote ischemic conditioning (RIC) has been shown to protect against intestinal ischemia in rodents. We aimed to determine the efficacy of RIC in a large animal model of NEC.
View Article and Find Full Text PDFExp Mol Pathol
December 2024
Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark. Electronic address:
Necrotizing enterocolitis (NEC) is a serious condition in premature infants, in which a portion of the intestine undergoes inflammation and necrosis. The preterm pig develops NEC spontaneously, making it a suitable model for exploring novel NEC treatments. We aimed to revise the intestinal scoring system to more accurately describe the diversity of NEC lesions in the preterm piglet model.
View Article and Find Full Text PDFBiomed Pharmacother
October 2024
Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark. Electronic address:
Necrotizing enterocolitis (NEC) is a microbiota- and feeding-related gut inflammatory disease in preterm infants. The standard of care (SOC) treatment for suspected NEC is antibiotic treatment and reduced enteral feeding, but how SOC treatment mitigates NEC remains unclear. We explored whether SOC treatment alone or combined with an anti-inflammatory protein (inter-alpha inhibitor protein, IAIP) supplementation improves outcomes in a preterm piglet model of formula-induced NEC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!