Purpose: This paper introduces a new computer-aided diagnosis (CAD) system for detecting early-stage diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA) images.
Methods: The proposed DR-CAD system is based on the analysis of new local features that describe both the appearance and retinal structure in OCTA images. It starts with a new segmentation approach that has the ability to extract the blood vessels from superficial and deep retinal OCTA maps. The high capability of our segmentation approach stems from using a joint Markov-Gibbs random field stochastic model integrating a 3D spatial statistical model with a first-order appearance model of the blood vessels. Following the segmentation step, three new local features are estimated from the segmented vessels and the foveal avascular zone (FAZ): (a) vessels density, (b) blood vessel calibre, and (c) width of the FAZ. To distinguish mild DR patients from normal cases, the estimated three features are used to train and test a support vector machine (SVM) classifier with the radial basis function (RBF) kernel.
Results: On a cohort of 105 subjects, the presented DR-CAD system demonstrated an overall accuracy (ACC) of 94.3%, a sensitivity of 97.9%, a specificity of 87.0%, the area under the curve (AUC) of 92.4%, and a Dice similarity coefficient (DSC) of 95.8%. This in turn demonstrates the promise of the proposed CAD system as a supplemental tool for early detection of DR.
Conclusion: We developed a new DR-CAD system that is capable of diagnosing DR in its early stage. The proposed system is based on extracting three different features from the segmented OCTA images, which reflect the changes in the retinal vasculature network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.13142 | DOI Listing |
J Clin Neurosci
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China. Electronic address:
Objectives: This study investigated the correlation between retinal vasculature and cerebral small vessel disease (CSVD) imaging markers, providing new evidence for the retina-brain association.
Methods: Two hundred and thirty-nine participants aged 55-85 were enrolled in the study. CSVD indicators, encompassing white matter hyperintensities (WMHs), lacunes (LAs), cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVSs), were assessed.
J Biomed Opt
January 2025
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Quzhou Aliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China.
Background: Gestational diabetes mellitus (GDM) is a temporary metabolic disorder in which small retinal vessels may have experience subtle changes before clinical lesions of the fundus retina appear. An innovative artificial intelligence image processing technology was applied to locate and analyze the small retinal vessel morphology and accurately evaluate the changes of the small retinal vessels in GDM patients and pregnant women with normal blood glucose and non-pregnant women with normal blood glucose.
Methods: The subjects were divided into three groups:GDM group, pregnant control group (PC), and normal control group (NC).
Ophthalmic Surg Lasers Imaging Retina
January 2025
Tractional retinoschisis (TRS) secondary to proliferative diabetic retinopathy (PDR) may be differentiated from tractional retinal detachment (TRD) by its characteristically nonprogressive course. The purpose of the current study was to describe the use of swept-source optical coherence tomography angiography (SS-OCTA) in the diagnosis and monitoring of TRS secondary to PDR. Retrospective, consecutive case series of patients with TRS secondary to PDR are featured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!