Mirabilis jalapa L. is an ornamental plant of the composite family, which was found hyperaccumulating Cd. Due to its larger biomass, developed root system, root exudation, and microbial interactions, certain organic pollutants in its rhizosphere can be effectively degraded. Thus, M. jalapacan be used to co-remediate heavy metal and organic pollutant co-contaminated soil. The aim of this paper is to explore the remediation capacity of M. jalapa for Cd-PAHs co-contaminated soil in the presence of five chelators or surfactants. The concentrations of Cd and PAHs in collected soil samples were 0.85 mg kg Cd and 1.138 mg kg PAHs (16 kinds of priority control polycyclic aromatic hydrocarbons by USEPA). The chelators or surfactants of EDTA, EGTA, CA, TW80, and SA were respectively spiked to the pots according to the experiment design at 1 month before the plant harvested. The results showed that the capacity of Cd in shoot of M. jalapa was 7.99 μg pot without any addition (CK4, M. jalapa in original soil without amendment). However, Cd capacity in shoot of M. jalapa was increased (p < 0.05) by 31.7%, 181.7%, and 107.4% in treatment of R, R and R, respectively. As for the degradation of PAHs in soil, there was no significant decrease (p < 0.05) in the treatment of CK2 (original soil spiked with 0.9 SA without M. jalapa), CK3 (original soil spiked with 0.3 TW80 without M. jalapa), and CK4 compared to the control CK1 (original soil without M. jalapa and amendment). When amendments were added to soils with M. jalapa,the PAHs concentrations in soils significantly decreased (p < 0.05) by 21.7%, 23.8%, 27.0%, 19.8%, 21.8%, 31.2%, and 25.5% for the treatment of R, R, R, R, R, R, and R, respectively. Basically, Cd capacity in shoot of M. jalapa was improved by chelators. PAHs degradation was caused by the existence of surfactants in rhizosphere of M. jalapa. But the roles of different chelators or surfactants were quite distinct. In short, the Cd capacity in the shoot and PAHs degradation in the rhizosphere of M. jalapa in the treatment of R were all significantly increased (p < 0.05), which was more practical for M. jalapa phytoremediating Cd-PAHs co-contaminated soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-2973-3 | DOI Listing |
J Biomed Mater Res B Appl Biomater
January 2025
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.
Burns are complex traumatic injuries that lead to severe physical and psychological problems due to the prolonged healing period and resulting physical scars. Owing to their versatility, hydrogels can be loaded with various functional factors, making them promising wound dressings. However, many hydrogel dressings cannot support cell survival for a long time, thereby delaying the process of tissue repair.
View Article and Find Full Text PDFJ Toxicol Sci
January 2025
Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University.
A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Chitosan (CS) is a versatile polysaccharide with numerous inherent biological activity, while the lack of amphiphilicity limits its application in emulsion-based systems. In this study, erythorbyl myristate (EM) with interfacial activity was chemically modified to 5-O-succinyl EM (EMS) and grafted onto CS to improve the emulsifying properties. The grafting reaction was conducted by the catalysis of protease, with the progress of the reaction monitored by HPLC analysis and UV absorbance measurement.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy.
Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.
View Article and Find Full Text PDFChemosphere
February 2025
Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea. Electronic address:
Gravity-driven membrane (GDM) systems are increasingly recognized as sustainable and energy-efficient solutions for decentralized water treatment. However, membrane fouling, particularly by organic matter, remains a significant operational challenge, necessitating regular chemical cleaning to maintain performance. The present study was undertaken to investigate the cleaning efficiency of sodium dichloroisocyanurate (NaDCC) tablets, a novel solid-state alternative to conventional liquid cleaning agents such as sodium hypochlorite (NaOCl), sodium lauryl sulfate (SLS), acetic acid, and citric acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!