Fear extinction depends on N-methyl-D-aspartate glutamate receptors (NMDARs) and brain-derived neurotrophic factor (BDNF) activation in the limbic system. However, postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) coupling, the downstream signaling of NMDARs activation, obstructs the BDNF signaling transduction. Thus, we wondered distinct roles of NMDAR activation and PSD-95-nNOS coupling on fear extinction. To explore the mechanisms, we detected protein-protein interaction using coimmunoprecipitation and measured protein expression by western blot. Contextual fear extinction induced a shift from PSD-95-nNOS to PSD-95-TrkB association in the dorsal hippocampus and c-Fos expression in the dorsal CA3. Disrupting PSD-95-nNOS coupling in the dorsal CA3 up-regulated phosphorylation of extracellular signal-regulates kinase (ERK) and BDNF, enhanced the association of BDNF-TrkB signaling with PSD-95, and promoted contextual fear extinction. Conversely, blocking NMDARs in the dorsal CA3 down-regulated BDNF expression and hindered contextual fear extinction. NMDARs activation and PSD-95-nNOS coupling play different roles in modulating contextual fear extinction in the hippocampus. Because inhibitors of PSD-95-nNOS interaction produce antidepressant and anxiolytic effect without NMDAR-induced side effects, PSD-95-nNOS could be a valuable target for PTSD treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109109 | PMC |
http://dx.doi.org/10.1038/s41598-018-30899-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!