Seed coat color is an important part of consumer preferences for cowpea ( [L.] Walp). Color has been studied in numerous crop species and has often been linked to loci controlling the anthocyanin biosynthesis pathway. This study makes use of available resources, including mapping populations, a reference genome, and a high-density single nucleotide polymorphism genotyping platform, to map the black seed coat and purple pod tip color traits, with the gene symbol , in cowpea. Several gene models encoding MYB domain protein 113 were identified as candidate genes. MYB domain proteins have been shown in other species to control expression of genes encoding enzymes for the final steps in the anthocyanin biosynthesis pathway. PCR analysis indicated that a presence/absence variation of one or more MYB113 genes may control the presence or absence of black pigment. A PCR marker has been developed for the MYB113 gene , a candidate gene for black seed coat color in cowpea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169384 | PMC |
http://dx.doi.org/10.1534/g3.118.200521 | DOI Listing |
Analyst
January 2025
Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
The seed coat plays a pivotal role in seed development and germination, acting as a protective barrier and mediating interac-tions with the external environment. Traditional histochemical techniques and analytical methods have provided valuable insights into seed coat composition and function. However, these methods often suffer from limitations such as indirect chemical signatures and lack of spatial resolution.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China. Electronic address:
Seed hardness is an important quality characteristic of pomegranate fruit. The development of seed hardness relies on the deposition of lignin in the inner seed coat, but the underlying molecular mechanisms remain unclear. In this study, we identified a member of ABCG transporters, PgABCG9, which may function in seed hardening by negatively regulating lignin biosynthesis.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Black oilseed crops are rich in diverse phenolic compounds and have excellent antioxidant activities, as reported in traditional Chinese medicine. Testa (seed coat) and peeled seeds (cotyledon, embryo, and other structures) are the seed's crucial components, contributing to the variation in phytonutrient, phenol content, bioactive component, and protective and pharmacological effects. However, comprehensive and comparative information on total phenol, flavonoid, antioxidant, and metabolic profiles in black seed testa and peeled sesame, soybean, peanut, and rapeseed seeds is rare.
View Article and Find Full Text PDFEvodevo
December 2024
Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
Background: Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!