Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The current global warming scenario has led to a renewed interest in determining which species are more vulnerable to climate change. Hence, it is important to understand which factors can affect estimates of species vulnerability. We determined the critical thermal maxima (CT) for six species of North American anuran larvae and measured the environmental temperatures to which they are exposed during their aquatic stage to estimate their warming tolerance (WT; difference between the critical thermal maximum and the macro- and microhabitat maximum environmental temperatures). Our results indicate that these species exhibited CT values (37.8-41.7 °C) that were similar to other temperate species and positively correlated only with environmental temperatures measured at the microclimate scale. This indicates that microclimatic variables are better predictors of CT variation than macroclimate data. Moreover, most of the CT variation found was associated with higher taxonomic levels, indicating that related species may show similar CT values due to phylogenetic inertia. Studied species also exhibited high values of WT (10.3-22.6 °C), similar to temperate amphibian species from other bioregions. This indicates that there is a considerable gap between the species' critical thermal maximum and maximum environmental temperature, whether using datalogger (microclimate) or WorldClim (macroclimate) environmental data. However, WT estimates based on datalogger data were not related to those based on macroclimate environmental data. Finally, variation associated with the type of environmental data used (macro- vs. microclimate) had a profound influence on WT estimates. Hence, our perception of which species are more vulnerable to global warming changes may depend on the scale of the climate data used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2018.07.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!