Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries.

Anal Chim Acta

Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, USA. Electronic address:

Published: November 2018

We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into "bulk" pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative OSi-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2018.05.052DOI Listing

Publication Analysis

Top Keywords

gallium indium
8
gain eutectic
8
indium eutectic
4
eutectic masking
4
masking prior
4
prior porous
4
porous silicon
4
silicon formation
4
formation creates
4
creates unique
4

Similar Publications

Tumor-induced osteomalacia is characterized by hypophosphatemia and fragility fractures caused by fibroblast growth factor 23 (FGF23)-producing tumors. We report a case of tumor-induced osteomalacia in which the tumor location could be determined by gallium 68 (Ga)-DOTATOC positron emission tomography (PET)/computed tomography (CT). A 74-year-old woman had recurrent fractures and bone pain.

View Article and Find Full Text PDF

Interfacial Work Function Modulation of Wide Bandgap Perovskite Solar Cell for Efficient Perovskite/CIGS Tandem Solar Cell.

Small Methods

January 2025

Center for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.

Wide-bandgap perovskite solar cells (PVSCs), a promising top-cell candidate for high-performance tandem solar cells, often suffer from larger open-circuit voltage (V) deficits as the bandgap increases. Surface passivation is a common strategy to mitigate these V deficits. However, understanding the mechanisms underlying the differences in passivation effects among various types of molecules remains limited, which is crucial for developing universal interface passivation strategies and guiding the design of passivation molecules.

View Article and Find Full Text PDF

Different application domains impose diverse and often conflicting requirements on the optoelectronic performance of metal oxide semiconductor (MOS) thin-film transistors (TFTs). These varying demands present substantial challenges in the selection of TFT materials and the optimization of device performance. This study begins by examining three primary application areas for TFTs: display drivers, photodetectors, and optoelectronic synapses.

View Article and Find Full Text PDF

Wirelessly driven flexible actuators are crucial to the development of flexible robotic crawling. However, great challenges still remain for the crawling of flexible actuators in complex environments. Herein, we reported a wireless flexible actuator synergistically driven by wireless power transmission (WPT) technology and near-infrared (NIR) light, which consists of a poly(dimethylsiloxane)-graphene oxide (PDMS-GO) composite layer, eutectic gallium-indium alloy (EGaIn), a PDMS layer, and a polyimide (PI) layer.

View Article and Find Full Text PDF

Macrophage-Mediated Liquid Metal Nanoparticles for Enhanced Tumor Accumulation and Inhibition.

ACS Biomater Sci Eng

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!