Microtubule Hyperacetylation Enhances KL1-Dependent Micronucleation under a Tau Deficiency in Mammary Epithelial Cells.

Int J Mol Sci

Faculty of Health Science, Tokoha University, 1-30, Mizuochi-cho, Aoi-ku, Shizuoka-shi, Shizuoka 420-0831, Japan.

Published: August 2018

Enhanced microtubule acetylation has been identified as a negative prognostic indicator in breast cancer. We reported previously that primary cultured human mammary epithelial cells manifest breast cancer-related aneuploidization via the activation of severing protein katanin-like (KL)1 when tau is deficient. To address in this current study whether microtubule hyperacetylation is involved in breast carcinogenesis through mitosis, the effects of tubacin on human mammary epithelial cells were tested using immunofluorescence techniques. Tau-knockdown cells showed enhancement of KL1-dependent events, chromosome-bridging and micronucleation in response to tubacin. These enhancements were suppressed by further expression of an acetylation-deficient tubulin mutant. Consistently, using a rat fibroblast-based microtubule sensitivity test, it was confirmed that KL1 also shows enhanced activity in response to microtubule hyperacetylation as well as katanin. It was further observed in rat fibroblasts that exogenously expressed KL1 results in more micronucleation under microtubule hyperacetylation conditions. These data suggest that microtubule acetylation upregulates KL1 and induces more aneuploidy if tau is deficient. It is thus plausible that microtubule hyperacetylation promotes tumor progression by enhancing microtubule sensitivity to KL1, thereby disrupting spindle microtubules and this process could be reversed by the microtubule-binding and microtubule protective octapeptide NAPVSIPQ (NAP) which recruits tau to the microtubules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165458PMC
http://dx.doi.org/10.3390/ijms19092488DOI Listing

Publication Analysis

Top Keywords

microtubule hyperacetylation
20
mammary epithelial
12
epithelial cells
12
microtubule
10
microtubule acetylation
8
human mammary
8
tau deficient
8
microtubule sensitivity
8
kl1
5
hyperacetylation enhances
4

Similar Publications

Unlabelled: Following reactivation of a latent alphaherpesvirus infection, viral particles are assembled in neuronal cell bodies, trafficked anterogradely within axons to nerve termini, and spread to adjacent epithelial cells. The virally encoded membrane proteins US9p and the glycoprotein heterodimer gE/gI of pseudorabies virus (PRV) and herpes simplex virus type 1 (HSV-1) play critical roles in anterograde spread, likely as a tripartite gE/gI-US9p complex. Two kinesin motors, kinesin-1 and kinesin-3, are implicated in the egress of these viruses, but how gE/gI-US9p coordinates their activities is poorly understood.

View Article and Find Full Text PDF

Acetylation of key Lysine residues characterizes aggregates of the microtubule-associated protein tau constituting the neuropathological hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and Progressive Supranuclear Palsy (PSP). This has led to the idea that acetylation influences tau aggregation. Using a HEK293 cell-based aggregation assay, we tested whether acetylation-mimicking substitutions (K→Q) on five AD-associated acetyl-modified sites (AcK-311, 353, 369, 370, 375) influenced its propensity to aggregate when exposed to tau seeds derived from two clinically distinctive diseases - AD and PSP.

View Article and Find Full Text PDF

The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival.

View Article and Find Full Text PDF

Nutritional stress-induced regulation of microtubule organization and mRNP transport by HDAC1 controlled α-tubulin acetylation.

Commun Biol

July 2023

Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany.

In response to nutritional stress, microtubules in cells of the Drosophila female germline are depleted from the cytoplasm and accumulate cortically. This triggers aggregation of mRNPs into large processing bodies (P-bodies) and oogenesis arrest. Here, we show that hyperacetylation of α-tubulin at lysine 40 (K40) alters microtubule dynamics and P-body formation.

View Article and Find Full Text PDF

Background: Chronic ethanol exposure leads to enhanced protein acetylation and acetaldehyde adduction. Of the multitude of proteins that are modified on ethanol administration, tubulin is among the best studied. However, an open question is whether these modifications are observed in patient samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!