The objective of this study was to use finite element models to investigate the biomechanics of stable thoracolumbar burst fracture repair using unilateral short-segment fixation and 4 alternate pedicle screw systems.Four posterior pedicle screw systems were compared for unilateral short-segment fixation using finite element models: intermediate bilateral short pedicle screw fixation, intermediate bilateral long pedicle screw fixation, intermediate unilateral short pedicle screw fixation, and intermediate unilateral long pedicle screw fixation. We compared range of motion (ROM), von Mises stresses on the implants, and stress on the intervertebral discs superior and inferior to the injured vertebra during simulated spinal movements.There were no significant differences in ROM, von Mises stress, or intervertebral disc stress among the 4 intermediate pedicle screw fixation techniques for all spinal movements evaluated. In addition, there were no consolidated trends depicting beneficial differences between the short and long screw models, or between the unilateral and bilateral screw models.ROM, von Mises stress, and intervertebral disc stress are the same across the 4, posterior short-segment fixation techniques evaluated using finite element models. The simplest technique-posterior short segment fixation combined with intermediate unilateral short pedicle screw fixation-is a feasible treatment strategy for stable thoracolumbar fracture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112892 | PMC |
http://dx.doi.org/10.1097/MD.0000000000012046 | DOI Listing |
J Neurosurg Spine
January 2025
1Department of Spine Surgery, Hospital for Special Surgery, New York.
Objective: When creating minimally invasive spine fusion constructs, accurate pedicle screw fixation is essential for biomechanical strength and avoiding complications arising from delicate surrounding structures. As research continues to analyze how to improve accuracy, long-term patient outcomes based on screw accuracy remain understudied. The objective of this study was to analyze long-term patient outcomes based on screw accuracy.
View Article and Find Full Text PDFBrain Spine
May 2024
Goettingen Medical University, Department of Trauma Surgery, Orthopedics and Plastic Surgery, Robert-Koch-Str. 40, D-37099, Goettingen, Germany.
Introduction: As medical education becomes more complex, the demand for advanced teaching and training methods has grown. Technological advancements have opened up new possibilities, particularly in the realm of virtual reality (VR) simulations for training.
Research Question: Our prospective, randomized pilot study aims to assess whether a novel VR-based 3D training platform can effectively teach the knowledge and skills needed for complex spinal surgery, specifically pedicle screw placement.
Eur Spine J
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China.
Purpose: To describe a novel alternative technique for C2 fixation under the concept of atlantoaxial joint distraction and fusion with intra-articular Cages, and to report its preliminary clinical outcomes.
Methods: Eighteen patients with basilar invagination and atlantoaxial dislocation underwent atlantoaxial joint distraction and fusion with intra-articular Cages. All patients had hypoplasia of the C2 isthmus prohibiting insertion of the pedicle screw.
BMC Geriatr
January 2025
Department of Neurosurgery, Yonsei University College of Medicine, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Background: Comparative studies of posterior lumbar interbody fusion with cortical bone trajectory and pedicle screw in older patients, particularly in those aged ≥ 80 years, are rare. This study aimed to retrospectively analyze the clinical and surgical outcomes following posterior lumbar interbody fusion with pedicle screw fixation compared to cortical bone trajectory in patients aged ≥ 80 years with degenerative lumbar spine disease.
Methods: We included 68 patients aged ≥ 80 years who underwent degenerative lumbar spinal surgery at our spine center between January 2011 and December 2020.
Med Leg J
January 2025
Department of Neurosurgery, Tufts Medical Center, Tufts University School of Medicine, Boston, USA.
Spine surgery is highly litigious; misplaced screws and intraoperative neuromonitoring frequently feature in lawsuits. Intraoperative neuromonitoring aims to prevent injury but its standards are debated, and literature suggests its benefits are mixed. We surveyed its use among neurosurgeons from the Congress of Neurological Surgeons with Pearson's chi-square test applied to analyse data within R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!