Usnic acid, a lichen secondary metabolite produced by a whole number of lichens, has attracted the interest of researchers owing to its broad range of biological activity, including antiviral, antibiotic, anticancer properties, and it possessing a certain toxicity. The synthesis of new usnic acid derivatives and the investigation of their biological activity may lead to the discovery of compounds with better pharmacological and toxicity profiles. In this context, a series of new usnic acid derivatives comprising a terpenoid moiety were synthesized, and their ability to inhibit the catalytic activity of the human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 was investigated. The most potent compounds (15A, 15B, 15G: , and 16A, 16B, 16G: ) had IC values in the range of 0.33 - 2.7 µM. The inhibitory properties were mainly dependent on the flexibility and length of the terpenoid moiety, but not strongly dependent on the configuration of the asymmetric centers. The synthesized derivatives showed low cytotoxicity against human cell lines in an MTT assay. They could be used as a basis for the development of more effective anticancer therapies when combined with topoisomerase 1 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-0681-7069DOI Listing

Publication Analysis

Top Keywords

usnic acid
16
acid derivatives
12
tyrosyl-dna phosphodiesterase
8
biological activity
8
terpenoid moiety
8
inhibitory semisynthetic
4
usnic
4
semisynthetic usnic
4
acid
4
derivatives
4

Similar Publications

Background: Prostate cancer (PC) affects millions of men, causing high mortality rates. Despite the treatment approaches, the options for metastatic castration-resistant prostate cancer (mCRPC), a lethal form of advanced PC, are still limited. Cabazitaxel (Cbx) is the last taxane-derived chemotherapeutic approved for Docetaxel- resistant mCRPC patients.

View Article and Find Full Text PDF

Allelopathic influence of usnic acid on Physcomitrium patens: A proteomics approach.

Plant Physiol Biochem

December 2024

Department of Plant Biology, Pavol Jozef Šafárik University in Košice, Mánesova 1889/23, 040 01, Košice, Slovakia. Electronic address:

Allelopathy, the chemical interaction of plants by their secondary metabolites with surrounding organisms, profoundly influences their functional features. Lichens, symbiotic associations of fungi and algae and/or cyanobacteria, produce diverse secondary metabolites, among other usnic acid, which express to have potent biological activities. Mosses, i.

View Article and Find Full Text PDF

Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids.

View Article and Find Full Text PDF

Design, synthesis, structural characterization, cytotoxicity and computational studies of Usnic acid derivative as potential anti-breast cancer agent against MCF7 and T47D cell lines.

Comput Biol Chem

December 2024

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia. Electronic address:

Article Synopsis
  • - Novel inhibitors like usnic acid derivative (UA1) are being developed to combat the increasing rates of breast cancer (BC) in women, promising stronger effects compared to existing treatments.
  • - The study utilized advanced techniques like FT-IR, NMR, and various simulations to analyze UA1’s structure and anticancer potential, finding it effective against breast cancer cell lines MCF7 and T47D with IC values indicating strong antitumor activity.
  • - Molecular docking and dynamics simulations showed UA1 binds effectively to the target protein, demonstrating stability and a favorable binding energy, suggesting its potential as a preventive agent against breast cancer.
View Article and Find Full Text PDF

Lichen and Its Microbiome as an Untapped Source of Anti-Biofilm Compounds.

Chem Biodivers

November 2024

Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722, Université de Limoges, Limoges, France.

Lichen substances have been first described in the 1870s, and around 10 000 compounds have been isolated and characterized. Most of them have been evaluated for their activity on planktonic microorganisms (bacteria and fungi). More recently, microorganisms colonizing the lichen thallus have been isolated and identified using DNA sequencing, giving access to a wide diversity of culturable microorganisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!