Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence.

Ageing Res Rev

Well Aging Research Center, DGIST, Daegu, Republic of Korea; The Future Life & Society Research Center, Chonnam National University, Gwangju, Republic of Korea. Electronic address:

Published: November 2018

Mitochondria and lysosomes undergo the most marked senescence-related alterations among all cellular organelles. Whereas mitochondria undergo gradual structural changes associated with reduced function, lysosomes exhibit progressively deteriorated function along with the accumulation of lipofuscins. Lysosomal dysfunction induces the deterioration of mitochondrial turnover, resulting in the generation of more reactive oxygen species (ROS), with the increased ROS levels in turn targeting lysosomes. This vicious feedback loop between lysosomes and mitochondria thus aggravates senescence phenotypes. Based on findings that lysosomal activity is diminished in senescent cells and that the resultant oxidative stress correlates with mitochondrial damage, the existence of a lysosomal-mitochondrial axis with a functional role in senescence has been proposed. In this review, we interrogate the interplay between lysosomes and mitochondria during senescence and propose the lysosomal-mitochondrial axis to serve a potential function as an inducer of senescence alleviation. Thus, learning how to control the lysosomal-mitochondrial axis should represent an important research directive for developing therapeutics toward ageing-related disease as well as the aging process itself. Further research focusing on the lysosomal-mitochondrial axis will add to our knowledge regarding aging and age-related pathologies, as well as provide new strategies for anti-aging intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2018.08.003DOI Listing

Publication Analysis

Top Keywords

lysosomal-mitochondrial axis
20
lysosomes mitochondria
8
axis
5
senescence
5
lysosomes
5
adjustment lysosomal-mitochondrial
4
axis control
4
control cellular
4
cellular senescence
4
mitochondria
4

Similar Publications

The age pigment lipofuscin causes oxidative stress, lysosomal dysfunction, and pyroptotic cell death.

Free Radic Biol Med

November 2024

Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria. Electronic address:

Accumulation of the age pigment lipofuscin represents a ubiquitous hallmark of the aging process. However, our knowledge about cellular effects of lipofuscin accumulation is potentially flawed, because previous research mainly utilized highly artificial methods of lipofuscin generation. In order to address this tremendous problem, we developed a convenient protocol for isolation of authentic lipofuscin from human and equine cardiac tissue in high purity and quantity.

View Article and Find Full Text PDF

Adiponectin has previously been investigated for exerting its protective effect against myocardial injury through anti-apoptotic and anti-oxidative actions. Therefore, the present study aimed to investigate the nature and mechanism of adiponectin inhibition of HO-induced apoptosis in chicken skeletal myoblasts. Skeletal muscle satellite cells were differentiated and assigned into three groups.

View Article and Find Full Text PDF

Multidrug resistance (MDR) is a major challenge in cancer chemotherapy. Nanoparticles as drug delivery systems (DDSs) show promise for MDR cancer therapy. However, current DDSs require sophisticated design and construction based on xenogeneic nanomaterials, evoking feasibility and biocompatibility concerns.

View Article and Find Full Text PDF

Visible light (VL) surely affects human skin in several ways, exerting positive (tissue regeneration, pain relief) and negative (oxidation, inflammation) effects, depending on the radiation dose and wavelength. Nevertheless, VL continues to be largely disregarded in photoprotection strategies, perhaps because the molecular mechanisms occurring during the interaction of VL with endogenous photosensitizers (ePS) and the subsequent biological responses are still poorly understood. Besides, VL encompass photons with different properties and interaction capacities with the ePS, but there are no quantitative comparisons of their effects on humans.

View Article and Find Full Text PDF

Exposure to zinc induces lysosomal-mitochondrial axis-mediated apoptosis in PK-15 cells.

Ecotoxicol Environ Saf

August 2022

Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China. Electronic address:

Zinc (Zn), a kind of metallic element, can cause poisonous effects on host physiology when its excess exposure. Lysosomes and mitochondria are the toxic targets of heavy metals, and the lysosomal-mitochondrial axis is also verified to take part in apoptosis, but the related underlying mechanisms in Zn-induced cytotoxicity remain undefined. Here, we identified that excess Zn could cause cell damage in PK-15 cells accompanied by the lysosomal and mitochondrial dysfunction, with the evidence by the elevated levels of cathepsin B/D (CTSB/CTSD) in cytoplasm and decrease of Lyso-Tracker Red signal, red fluorescence intensity of AO staining, mitochondrial complex enzyme activities and ATP production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!